1 / 40

MORFOLOGI, KOMPONEN DAN STRUKTUR VIRUS TUMBUHAN

Kuliah ke-3. MORFOLOGI, KOMPONEN DAN STRUKTUR VIRUS TUMBUHAN. Keutamaan. Ilmu yang mempelajari struktur virus penting untuk memahami berbagai aspek virologi, seperti bagaimana virus bertahan hidup, menginfeksi, menyebar, bereplikasi dan bagaimana mereka berhubungan atu sama lain.

aadeline
Download Presentation

MORFOLOGI, KOMPONEN DAN STRUKTUR VIRUS TUMBUHAN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kuliah ke-3 MORFOLOGI, KOMPONEN DAN STRUKTUR VIRUS TUMBUHAN

  2. Keutamaan • Ilmu yang mempelajari struktur virus penting untuk memahami berbagai aspek virologi, seperti bagaimana virus bertahan hidup, menginfeksi, menyebar, bereplikasi dan bagaimana mereka berhubungan atu sama lain. • Ilmu tentang struktur virus telah meningkat sejak penemuan mikroskop elektron dan prosedur X-ray crystallography seperti; • Teknik molekuler • Informasi kimia tentang virus

  3. Ultrastruktur Virus • Istilah pada komponen virus • Kapsid: kulit luar protein yang melingkupi asam nukleat • Kapsomer: unit morfologi yang dilihat dari permukaan partikel dan mewakili klaster unit struktur • Virion: partikel lengkap partikel virus

  4. Istilah pada komponen virus • Amplop(envelope/viral membrane): zat lemak berlapis yang mengandung glikoprotein virus. Tidak semua virus memiliki amplop, beberapa virus hanya terdiri dari nuklekapsid. • Nukleokapsid (core): asam nukleat virus yang dibungkus oleh pelindung kapsid protein

  5. Viruses Figure13.1

  6. Virus Structures 1. contain DNA or RNA 2. contain a protein coat (capsid) 3. Receptor – on capsid determines what cell can be infected and how the virus infects the cell

  7. Virus Structures • Inner core nucleic acid •  Contains genetic materials (DNA or RNA) • Outer core nucleic acid • Surrounds virus (Capsdi) • Contains receptors

  8. Structures not found on every viruses • Envelope • Surround some animal viruses • Made from host membranes • Tail, end plate, tail fibres • Bacteriophage only

  9. Struktur Virus Characteristic size scale is 30-100 nm. Structures are known at “atomic resolution” - see Viper website (http://viperdb.scripps.edu/ Highly symmetric (Bakeret al.)

  10. OrganizationofViral Particles •Contains RNA or DNA •Form a protective package •Transmit genetic material •Entry, multiply and exit the host •Redirect cellular machinery Streptococcus E.coli YeastCell

  11. Principlesof ViralArchitecture •Viralcapsidaremade of repated proteinsubunits •Capsidsareself assembled •Fraenkel-ConratandWilliams(1955):self-assemblyofTMV •Proteinsand nucleicacids are heldtogetherwithnon- covalent bonds •Protein-protein,protein-nucleicacid,protein-lipid •Helicaloricosahedral symmetry

  12. GeneralStructureof Viruses • Capsids • All viruses have capsids - protein coats that enclose and protect their nucleic acid. • Each capsid is constructed from identical subunits called capsomers made of protein. • The capsid together with the nucleic acid are • nucleoscapsid.

  13. TheViral Capsid • Capsid functions • Protect genome from atmosphere (May include damaging UV-light, shearing forces, nucleases either leaked or secreted by cells). • Virus-attachment protein- interacts with cellular receptor to initiate infection. • Delivery of genome in infectious form. May simply “dump” genome into cytoplasm (most +ssRNA viruses) or serve as the core for replication (retroviruses and rotaviruses).

  14. ViralCapsids • If 1 protein for 1 capsid: • Need > 18,000 amino acids. • Need > 54,000 nucleotides. • Small viruses hold max. of 5,000 nucleotides. • Must use many copies of 1 (or a few) protein(s). • High symmetry • Minimizes # different subunit interactions involved with assembly. • Simpler protein. • Self assembly: • Self-contained assembly "instructions".

  15. Capsidand Envelope Capsid: Non-enveloped Helical •Protect viral nucleic acid •Interact with the nucleic acid for packaging •Interact with vector for specific transmission •Interact with host receptors for entry to cell and to release of nucleic acid Enveloped Icosahedral Envelope: •Made from host cell membrane (plasma, ER or Golgi) •Fuse for Entry

  16. Bentuk Virus • Kira-kira ½ dari semua virus tumbuhan yang telah diketahui berbentuk memanjang (benang berputar atau batang keras). • Kira-kira ½ dari semua virus tumbuhan berbentuk bola (isometris atau polyhedral). • Beberapa virus berbentuk basilus silindris-menyerupai batang.

  17. Bentuk Virus • CUBIC (Icosahedral/polyhedral): • Spherical, amount of nucleic acid that can be packaged is limited by the number of capsomers and the size of the viral particle • E.g. Papilloma virus

  18. Bentuk Virus • HELICAL: • Rod shaped, varying widths and specific architectures; no theoretical limit to the amount of nucleic acid that can be packaged

  19. Bentuk Virus • BACTERIOPHAGE • Polyhedral-shape head cylindrical tail leglike fibres

  20. Cubic (Icosahedral) • Susunan Icosahedraladalah struktur virus yang khas • Suatu cosahedron memiliki 20 sisi segitiga, 12 sudut, dan 5:3:2 axis simetri rotasi

  21. Helical • Organized around a single axis (the “helix axis”) • Probably evolved along with other helical structures like • DNA, -helix, etc. • Allow flexibility (bending) • Helical viruses form a closely related spring like helix instead. The best studied TMV but many animal viruses and phage use this general arrangement. • – Note-all animal viruses that are helical are enveloped, unlike many of the phage and plant viruses. • Most helixes are formed by a single major protein arranged with a constant relationship to each other (amplitude and pitch).

  22. Helical symmetry • Tobacco mosaic virus is typical, well-studied example • Each particle contains only a single molecule of RNA (6395 nucleotide residues) and 2130 copies of the coat protein subunit (158 amino acid residues; 17.3 kilodaltons) • – u=16.33 subunits/turn • – p=1.4 Å • – P= 23 Å • TMV protein subunits + nucleic acid will self-assemble in vitro in a energy-independent fashion • Self-assembly also occurs in the absence of RNA • TMV rod is 18 nanometers • (nm) X 300 nm n

  23. Komposisi Virus • Protein  adalah 60-95% terdiri dari virion • Sama untuk setiap jenis virus tetapi bervariasi dari satu virus dgn virus lain • Subunit TMV - 158 asam amino dgn massa 17,600 Dalton • (17.6 kDa, kd atau K) • TYMV – 20,600 Dalton protein • 2. Asam nukleat  adalah 5-40% virion • Sphererical viruses: 20-40% • Helical viruses : 5-6%

  24. Komposisi Virus • Asam Nukleat (5-40%) mewakili bahan genetika, sangat diperlukan untuk replikasi • Asam Nukleat sendiri cukup untuk replikasi virus • Protein (60-95%) melindungi genom virus dari: • degradasi • Fasilitasi pergerakan melalui inang dan • transmisi dari satu inang ke inang lainnya.

  25. Persentase proteinpada beberapa virus

  26. WatsonandCrick • Pada tahun 1956 mengemukakan: • Jumlah asam nukleat virus tidak cukup untuk meng-kodekan lebih dari sejumlah protein • Oleh karena itu kulit luar protein harus merupakan subunit yang sama. • Subunit harus disusun untuk menyediakan setiap subunit dengan lingkungan yang sama, seperti pembungkusan simetris.

  27. Berbagai fitur virus dapat di-estimasi dengan mempelajari: • 1. Kimia dan Biokimia • 2. Ukuran partikel • Hidrodinamika • Pemancaran laser telah digunakan untuk menentukan radius virus yang berbentuk bola (spherical virus) • Mikroskop elektron • X-ray crystallography • Dapat memberi estimasi akurat radius virus isokahedral (icosahedral virus), tapi dgn kondisi virus harus mampu membentuk kristal yang stabil.

  28. Mikroskop Elektron • Pada tahun 1924 L. de BROGLIE menemukan cahaya elektron dengan karakter panjang gelombang, yang kemudian menjadi syarat konstruksi mikroskop elektron. • Ditemukan oleh M. KNOLL & E. RUSKA (Technische Universität Berlin, 1932). • Salah satu objek biologi yang pertama diamati adalah : tobacco mosaic virus (TMV). • Gambar sel pertama dipublikasi tahun 1945 oleh K. R. PORTER, A. CLAUDE dan E. F. FULLAM (Rockefeller Institute, New York). • The Transmission Electron Microscope (TEM) • The Scanning electron microscope (SEM)

  29. TheTransmissionElectronMicroscope(TEM) A1973Siemenselectronmicroscope EMdevelopedbyE.Ruska1933

  30. TheTransmissionElectronMicroscope(TEM)

  31. Flu virus by TEM Avian Flu virus by TEM Swine Flu virus by TEM

  32. TMV by TEM TMV by SEM

  33. Tobacconecrosisvirus,26nmindiameter

  34. BROME MOSAICVIRUS • Type member Bromovirus genus, Bromoviridae of the family • Virions are nonenveloped icosohedrals (T=3), 26 nm in diameter, contain 22% nucleic acid and 78% protein • BMV genome is composed of three positive sense RNAs separately encapsidated RNA1 RNA2 RNA3 RNA4 kb), RNA2 (2.9 (2.1 kb), RNA4 RNA1 (3.2 kb), RNA3 (0.9 kb)

  35. Francki,Milne&Hatta.1985AtlasofPlantViruses,vol.I. Three-dimensionalimageofTurnipyellowmosaicvirus(TYMV) reconstructedfromEM

  36. Tobaccomosaicvirus • First virus crystallized (1946 Stanley was • awarded the Nobel prize) • First demonstration of infectious RNA (1950s) • First virus to be shown to consist of RNA • and protein • First virus characterized by X-ray crystallography to show a helical structure • First virus genome to becompletely sequenced

  37. Tobaccomosaicvirus(TMV),300nm PotatovirusY(PVY),740nm

  38. Maizestreakvirus, Geminiviridae Cocoaswollenshootvirus, Badnavirus

More Related