1 / 53

田正仁 莫納什大學採礦及資源工程系系主任 二零一四年七月十一日

ABET Visit in the United States. 田正仁 莫納什大學採礦及資源工程系系主任 二零一四年七月十一日. Jerry C. Tien ( 田正仁 ), Ph.D., P.E. B.S. (1971), M.S. (1974) & Ph.D. (1988) – Mining Engineering; BMA (1984) University of Missouri-Rolla 1985-2013

abrial
Download Presentation

田正仁 莫納什大學採礦及資源工程系系主任 二零一四年七月十一日

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ABET Visit in the United States 田正仁 莫納什大學採礦及資源工程系系主任 二零一四年七月十一日

  2. Jerry C. Tien (田正仁), Ph.D., P.E. B.S. (1971), M.S. (1974) & Ph.D. (1988) – Mining Engineering; BMA (1984) University of Missouri-Rolla 1985-2013 Lecturer (1985-90); Assistant Professor (1990-95), Associate Professor (1995-2013) President – Academic Council (1999-2000) Have been through four ABET visits and been an ABET evaluator twice (plus one training trip) 13.5 Years Industrial Experience; including working in China for 1.5 years (2000-2001)

  3. What Will I Talk Today US and Australian Higher Education Higher Education Curriculum – What’s in a US/Australian Degree? ABET visit – every five years • Criteria • Visit Preparation • ABET Visit Team Discussion

  4. US Higher Education • As of 2011, There are 4,599 degree-granting institutions, 2,870 four-year institutions and 1,729 two-year institutions. • The US had 21 million students in the higher education, or 5.7% of total population • The 2006 American Community Survey: – Approx 19.5% of the population had attended college but had no degree; – 7.4% held an associate degree – 17.1% had bachelor’s degree – 9.9% held a graduate degree St. Anselm College

  5. US Higher Education • Higher education includes: public universities, private universities, liberal arts colleges and community colleges • Strong research and funding have helped make American colleges and universities among the world’s most prestigious • More than 30of the highest-ranked 45institutions are in the US (measured by awards and research output) – Academic Ranking of World Universities by Shanghai Jiao Tong University • 2010 Webometrics Ranking of World Universities: 103 US universities in the Top 200

  6. US Higher Education • In 2009 in the US: • 21.3% of the adult population above 18 years had attended colleges but had no degrees; • 7.5% held an associate’s degree • 17.6% held a bachelor’s degree • 10.3% held a graduate or professional degree • Cost of attending a US university (2014): – Around $37,000/yr for public (state) universities and $65,000/yr of private universities • Cost of attending an Australian university: – Around $60,000/year for foreign students (2014)

  7. Australian Higher Education • Small compared to China in number of universities and total number of students • There are approximately 37 universities/colleges: • New South Wales: 10 • Queensland and Victoria: 16 (8 each) • Number of Students: 1,047,000 • On shore international: 233,100 • Domestic: 813,700 • International Proportion: 22.3%

  8. Accreditation Board for Engineering and Technology (ABET) in the U.S.

  9. Accreditation Board for Engineering and Technology (ABET) It is a voluntary program, visit by invitation only, with strong participation of professional societies It is only for undergraduate studies A six-year cycle, one year status if there are serious deficiencies Two major components: Specific engineering programs and Institutional support

  10. General Criteria for Baccalaureate Level Programs All programs seeking accreditation from the Engineering Accreditation Commission (EAC) of ABET must demonstrate that they satisfy all of the following General Criteria for Baccalaureate Level Programs.

  11. General Criteria for Baccalaureate Level Programs Criteria 1. Students Student performance must be evaluated. Student progress must be monitoredto foster success in attaining student outcomes, thereby enabling graduates to attain program educational objectives. Students must be advised regarding curriculum and career matters.

  12. General Criteria for Baccalaureate Level Programs Criteria 1. Students (con’t) The program must have and enforce policiesfor accepting both new and transfer students, awarding appropriate academic credit for courses taken at other institutions, and awarding appropriate academic credit for work in lieu of courses taken at the institution. The program must have and enforce procedures to ensure and documentthat students who graduate meet all graduation requirements

  13. General Criteria for Baccalaureate Level Programs Criteria 2. Program Educational Objectives The program must have published program educational objectives that are consistent with the mission of the institution, the needs of the program’s various constituencies, and these criteria. There must be a documented, systematically utilized, and effective process, involving program constituencies, for the periodic review of these program educational objectives that ensures they remain consistent with the institutional mission, the program’s constituents’ needs, and these criteria.

  14. General Criteria for Baccalaureate Level Programs Criteria 3. Student Outcomes The program must have documented student outcomes that prepare graduates to attain the following program educational objectives. an ability to apply knowledge of mathematics, science, and engineering an ability to designand conduct experiments, as well as to analyze and interpret data

  15. General Criteria Criteria 3. Student Outcomes an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability an ability to function on multidisciplinary teams an ability to identify, formulate, and solve engineering problems an understanding of professional and ethical responsibility

  16. General Criteria Criteria 3. Student Outcomes an ability to communicate effectively the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context a recognition of the need for, and an ability to engage in life-long learning a knowledge of contemporary issues an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

  17. General Criteria Criteria 4. Continuous Improvement The program must regularly use appropriate, documented processes for assessing and evaluating the extent to which the student outcomes are being attained. The results of these evaluations must be systematically utilized as input for the continuous improvement of the program. Other available information may also be used to assist in the continuous improvement of the program

  18. General Criteria Criteria 5. Curriculum The curriculum requirements specify subject areas appropriate to engineering but do not prescribe specific courses. The faculty must ensure that the program curriculum devotes adequate attention and time to each component, consistent with the outcomes and objectives of the program and institution. The professional component must include: (next page)

  19. General Criteria Criteria 5. Curriculum one year of a combination of college level mathematics and basic sciences (some with experimental experience) appropriate to the discipline. Basic sciences are defined as biological, chemical, and physical sciences. one and one-half years of engineering topics, consisting of engineering sciences and engineering design appropriate to the student's field of study.

  20. General Criteria Criteria 5. Curriculum The engineering sciences have their roots in mathematics and basic sciences but carry knowledge further toward creative application. These studies provide a bridgebetween mathematics and basic sciences on the one hand and engineering practice on the other. Engineering design is the process of devising a system, component, or process to meet desired needs. It is a decision-making process (often iterative), in which the basic sciences, mathematics, and the engineering sciences are applied to convert resources optimally to meet these stated needs.

  21. General Criteria Criteria 5. Curriculum a general education component that complements the technical content of the curriculum and is consistent with the program and institution objectives. Students must be prepared for engineering practice through a curriculum culminating in a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints.

  22. General Criteria Criteria 6. Faculty The faculty must be of sufficient number and must have the competencies to cover all of the curricular areas of the program. There must be sufficient faculty to accommodate adequate levels of student-faculty interaction, student advising and counseling, university service activities, professional development, and interactions with industrial and professional practitioners, as well as employers of students.

  23. General Criteria Criteria 6. Faculty The program faculty must have appropriate qualificationsand must have and demonstrate sufficient authority to ensure the proper guidance of the program and to develop and implement processes for the evaluation, assessment, and continuing improvement of the program, its educational objectives and outcomes.

  24. General Criteria Criteria 6. Faculty The overall competence of the faculty may be judged by such factors as education, diversity of backgrounds, engineering experience, teaching effectiveness and experience, ability to communicate, enthusiasm for developing more effective programs, level of scholarship, participation in professional societies, and licensure as Professional Engineers.

  25. General Criteria Criteria 7. Facilities Classrooms, offices, laboratories, and associated equipment must be adequate to support attainment of the student outcomes and to provide an atmosphere conducive to learning. Modern tools, equipment, computing resources, and laboratories appropriate to the program must be available, accessible, and systematically maintained and upgraded to enable students to attain the student outcomes and to support program needs.

  26. General Criteria Criteria 7. Facilities Students must be provided appropriate guidance regarding the use of the tools, equipment, computing resources, and laboratoriesavailable to the program. The libraryservices and the computing and information infrastructure must be adequate to support the scholarly and professional activities of the students and faculty.

  27. General Criteria Criteria 8. Institutional Support Institutional support and leadership must be adequate to ensure the quality and continuity of the program. Resources including institutional services, financial support, and staff(both administrative and technical) provided to the program must be adequateto meet program needs. The resources available to the program must be sufficient to attract, retain, and provide for the continued professional development of a qualified faculty.

  28. General Criteria Criteria 8. Institutional Support The resources available to the program must be sufficientto acquire, maintain, and operate infrastructures, facilities, and equipment appropriate for the program, and to provide an environment in which student outcomes can be attained.

  29. Existing ABET Programs Aerospace Agricultural Architectural Bioengineering and Biomedical Biological Ceramic Chemical, Biochemical, Biomolecular Civil Construction Electrical and Computer Engineering, General Engineering and Engineering Science

  30. Existing ABET Programs Engineering Management Engineering Mechanics Environmental Fire Protection Geological Engineering Industrial Manufacturing Materials and Metallurgical Mechanical Mining Naval Architecture and Marine Ocean

  31. Existing ABET Programs Petroleum Software Surveying Systems

  32. Institutional Support Institutional funding Library facilities Laboratories Support Departments

  33. Program Criteria --- mining “Program Criteria for Mining and Similarly Named Engineering Programs” Lead Society: Society for Mining, Metallurgy and Exploration • Curriculum • Faculty

  34. Program Criteria --- mining • Curriculum The program must prepare graduates to apply mathematicsthrough differential equations, calculus-based physics, general chemistry, and probability and statistics as applied to mining engineering problem applications; to have fundamental knowledge in the geological sciences including characterization of mineral deposits, physical geology, structural or engineering geology, and mineral and rock identification and properties;

  35. Program Criteria --- mining • Curriculum (con’t) to be proficient in statics, dynamics, strength of materials, fluid mechanics, thermodynamics, and electrical circuits; to be proficient in engineering topics related to both surfaceand undergroundmining, including: mining methods, planning and design, ground control and rock mechanics, health and safety, environmental issues, and ventilation;

  36. Program Criteria --- mining • Curriculum (con’t) to be proficient in additional engineering topics such as rock fragmentation, materials handling, mineral or coal processing, mine surveying, and valuation and resource/reserve estimation as appropriate to the program objectives. The laboratory experience must prepare graduates to be proficient in geologic concepts, rock mechanics, mine ventilation, and other topics appropriate to the program objectives.

  37. Program Criteria --- mining Faculty Evidencemust be provided that the program faculty understand professional engineering practice and maintain currency in their respective professional areas. Program faculty must have responsibility and authority to define, revise, implement, and achieve program objectives.

  38. Proposed revision Criterion 6: Faculty The program must demonstrate that the faculty members must be are of sufficient number and they musthave the competencies to cover all of the curricular areas of the program. There must be sufficient faculty to accommodate adequate levels of student-faculty interaction, student advising and counseling, university service activities, professional development, and interactions with industrial and professional practitioners, as well as employers of students.

  39. Proposed revision Criterion 6: Faculty (con’t) The program faculty must have appropriate qualifications and must have and demonstrate sufficient authority to ensure the proper guidance of the program and to develop and implement processes for the evaluation, assessment, and continuing improvement of the program, its educational objectives and outcomes.

  40. Proposed revision Criterion 6: Faculty (con’t) The overall competence of the faculty may be judged by such factors as education, diversity of backgrounds, engineering experience, teaching effectiveness and experience, ability to communicate, enthusiasm for developing more effective programs, level of scholarship, participation in professional societies, and licensure as Professional Engineers.

  41. Sample Materials/Forms

  42. Sample Materials/Forms

  43. Sample Materials/Forms

  44. Sample Materials/Forms

  45. Sample Materials/Forms

  46. Sample Materials/Forms

  47. Sample Materials/Forms

  48. Sample Materials/Forms

  49. Sample Materials/Forms

  50. Visit Preparation A very long and involved process, with preparation started at least 1.5 years ahead of the visit There are two components of the materials: departmental/campus and individual faculty members Visiting team consists of a team leader, program evaluators and training members. Team leader will be responsible for the activities for the entire team and visiting/interviewing with various administrators

More Related