1 / 27

DIGITAL SIGNATURES and AUTHENTICATION PROTOCOLS - Chapter 13

DIGITAL SIGNATURES and AUTHENTICATION PROTOCOLS - Chapter 13. Digital Signatures Authentication Protocols Digital Signature Standard. Authentication auth A  B protects against {C} Signature sign

adair
Download Presentation

DIGITAL SIGNATURES and AUTHENTICATION PROTOCOLS - Chapter 13

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DIGITAL SIGNATURES and AUTHENTICATION PROTOCOLS - Chapter 13 • Digital Signatures • Authentication Protocols • Digital Signature Standard

  2. Authentication auth A  B protects against{C} Signature sign A  B protects against{A,C} AUTHENTICATION vs SIGNATURE

  3. Author Verifiable Date Authenticate by Time Contents Third Party SIGNATURE CHARACTERISTICS

  4. Direct • X  Y • weakness: security of private key • Arbitrated • + date • X  A  Y SIGNATURE TYPES

  5. ARBITRATED DIGITALSIGNATURE TECHNIQUES

  6. Conventional Encryption: After X  A  Y Dispute between X and Y Y  A: EKay[IDx||M||EKax[IDx||H(M)]] Table 13.1: Scheme (a) Arbiter Sees Message

  7. Conventional Encryption: Arbiter : neither can read message Eavesdropper Table 13.1: Scheme (b)Arbiter Does Not See Message

  8. Public-Key (double) Encryption: advantages: 1. No information shared before communication 2. if KRx compromised date is still correct 3. message secret from Arbiter and Eavesdropper Table 13.1: Scheme (c)Arbiter Does Not See Message

  9. Simple Replay: X m E m Logged Replay: X m||T0 t E m||T0(< T0 later) i m Undetected Replay:X m e E m  Backward Replay: X m X m E REPLAY ATTACKS

  10. m||T X Y synchronized clocks TIMESTAMP

  11. Use NONCE: N X Y m||N X Y handshake required CHALLENGE/RESPONSE

  12. ATTACK ON Fig 7.9 • E avesdropper gets Old Ks: • Replay Step 3 • Intercept Step 4 • Impersonate Step 5 • Bogus Messages  Y

  13. SOLUTION: TIMESTAMP • A IDA||IDB KDC • 2. KDC EKA[ KS||IDB||T||EKB[KS||IDA||T] ] A • 3. A EKB[KS||IDA||T] B • 4. B EKS[N1] A • 5. A EKS[f(N1)] B

  14. To counteract: Suppress – Replay attacks: 1. Check clocks regularly use KDC clock 2. Handshaking via Nonce CLOCK ATTACKS

  15. To counteract suppress-replay attacks: • A IDA|| NA B • B IDB||NB||EKB[IDA||NA||TB] KDC • KDC • EKA[IDB||NA||KS||TB]||EKB[IDA||KS||TB]||NB • A • A EKB[IDA||KS||TB]||EKS[NB]B • No clock synch. • TB only checked by B AN IMPROVED PROTOCOL over Fig 7.9

  16. - no secret key distribution (public key) • A IDA||IDB AS • AS EKRAS[IDA||KUA||T]||EKRAS[IDB||KUB||T]A • 3. A EKRAS[IDA||KUA||T]||EKRAS[IDB||KUB||T]||EKUB[EKRA[KS||T]] • B • Problem: Clock Synch. AUTHENTICATION SERVER

  17. 1. A IDA||IDB KDC 2. KDC EKRauth[IDB||KUB] A 3. A EKUB[NA||IDA] B 4. B IDB||IDA||EKUauth[NA] KDC 5. KDC EKRauth[IDA||KUA]||EKUB[EKRauth[NA||KS||IDA||IDB]] B 6. B EKUA[EKRauth[NA||KS||IDA||IDB]||NB] A 7. A EKS[NB] B ALTERNATIVE NONCE PROTOCOL

  18. (e.g. email) • Encrypt Message • Authenticate Sender ONE-WAY AUTHENTICATION

  19. A IDA||IDB||N1 KDC • KDC EKA[KS||IDB||N1||EKB[KS||IDA]]A • 3. A EKB[KS,IDA]||EKS[M]B SYMMETRIC-KEY (one-way auth.)

  20. Use Figs 11.1b,c, and d or A EKUB[KS]||EKS[M] B or A M||EKRA[H(M)] B PUBLIC-KEY (one-way auth.)

  21. Send A’s public key to B A M||EKRA[H(M)]||EKRAS[T||IDA||KUA] B PUBLIC-KEY (one-way auth.)

  22. SignatureYES Encryption NO Key-Exchange NO DSS : USES SHA-1

  23. DSS : USES SHA-1

  24. p,q,g – global public keys x - user private key y - user public key k - user per-message secret number r = (gk mod p) mod q s = [k-1(H(M) + xr)] mod q Signature = (r,s) precomputegk,k-1 DISCRETE LOG

  25. w = (s’)-1 mod q u1 = [H(M’)w] mod q u2= (r’)w mod q v = [(gu1.yu2) mod p] mod q wherey=gxmod p v =r’ ? y =gxis one-way: x yYES y  x NO VERIFY

  26. DIGITAL SIGNATURE ALGORITHM

  27. DSS SIGNING AND VERIFYING

More Related