1 / 30

2012 Astronomical Telescope + Instrumentation in Amsterdam, 3 July 2012

Developments of the wideband spectropolarimeter of the Domeless Solar Telescope at Hida Observatory. 2012 Astronomical Telescope + Instrumentation in Amsterdam, 3 July 2012 Tetsu Anan, Kiyoshi Ichimoto, Akihito Oi, Goichi Kimura, Yoshikazu Nakatani, Satoru Ueno (Kyoto University).

alder
Download Presentation

2012 Astronomical Telescope + Instrumentation in Amsterdam, 3 July 2012

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Developments of the wideband spectropolarimeter of the Domeless Solar Telescope at Hida Observatory 2012 Astronomical Telescope + Instrumentationin Amsterdam, 3 July 2012 Tetsu Anan, Kiyoshi Ichimoto, Akihito Oi, Goichi Kimura, Yoshikazu Nakatani, Satoru Ueno (Kyoto University)

  2. Solar polarimetric observation • Stokes vector • Zeeman effect => magnetic fields of photosphere U =  − I = V map I map Q =  − V =  − PASJ intensity White:N Black:S view towards the sun Magnetic field of photosphere Photosphere HINODE/SOT

  3. Development goalSpectro-Polarimetric observation system • Science • Open a new window of plasma diagnostics • Zeeman and Hanle effect => magnetic fields of chromosphere • Consideration for science and instrument of Solar-C • Stark effect => electric fields • impact polarization => non-thermal particles • Scattering polarization => radiation fields • Instrument • precise spectropolarimetric observations(〜10-4) • wide range of wavelength in visible and near infrared (400〜1100 nm) 3/27

  4. Hida Observatory 4/27

  5. Hida Observatory 5/27

  6. Domeless Solar Telescope (DST) at Hida Observatory DST 24m above ground Vacuum Tube Horizontal Spectrograph Focal plane ground Modulator / Analyzer Vertical Spectrograph 14m under ground 6/27

  7. Modulator / Analyzer Iobs+ (θ、δ) Iobs− (θ、δ) Iin=Qin Iin=Vin Iobs+ Iin=Uin 360 270 0 180 90 7/27 θ [deg] Rotation angle θ Waveplate retardation δ Polarizer (Beam splitter)3 Wollaston prisms

  8. Retardation of Waveplate V Quartz Q,U APSAW http://astropribor.com/content/view/25/33/ 9/27

  9. DetectorGE1650 & XEVA640 Quantum efficieency Non-linearity of XEVA640 GE1650 ・ Measured value ー Function for calibration XEVA640 Maximum frame rate : 30Hz To achieve photon noise〜10−3  30 sec (visible), 60 sec (near infrared) Sampling : 0.4arcsec, 4pm 10/27

  10. Rotation angle Rotating waveplate Detector CCD Camera:GE1650 IR Camera:XEVA640 Origin sensor accuracy of θ 〜 0.07°  Error of QUV/I〜10−4 Origin sensor produces a trigger for the camera to start a sequence of exposures 8/27

  11. Instrumental polarization of DST Entrance window • System • DST has 2 oblique mirrors (Newton & Coude) => Necessity to calibrate instrumental polarization of DST • DST polarization model • Parameters • Solar position (Hour Angle & Zenith distance) • Each optics • Stray light Newton mirror Coude mirror Secondary mirror Exit window Primary mirror Slit Modulator / Analyzer 11/27 Vertical Spectrograph

  12. DST polarization model • Mueller matrix MDST : 4×4 matrix Den MN MDST = R(φV)MscatDexMCMGR(φC)MNMPDenR(φN) MG MC MP, MN, MG, MC Dex MP Slit Modulator / Analyzer 12/27

  13. Idealized DST polarization model • Idealization Dex = Dex = identity matrix, Den M’DST = R(φV)MscatMCMGR(φC)MNMPR(φN) MN MG MC Unknown parameters : pN, pC, τN, τC, s MN, MC Dex MP Slit Modulator / Analyzer 13/27

  14. How to develop DST polarization model • Induce a well known polarization into DST • Observe IQUV of the polarization on the slit Unknown parameters of idealized MDST Remotely controllable turret Battery & Wireless set Linear polarizer peeped through 8 holes Solar panel 14/27

  15. Entrance window 15/27

  16. Remotely controllable turret mask Nakatani, Kimura, Anan, Ichimoto 16/27

  17. Remotely controllable turret under the mask Hole of mask Hole of panel Linear polarizer Under the mask, there is a remotely controllable turret accommodating 8 linear polarizers & 8 holes Nakatani, Kimura, Anan, Ichimoto 17/27

  18. Remotely controllable turret under the mask Hole of mask Hole of panel Linear polarizer Nakatani, Kimura, Anan, Ichimoto 18/27

  19. Remotely controllable turret under the mask Hole of mask Hole of panel Linear polarizer Machine produce polarizations (I,Q,U,V) = (1,0,0,0), (1,±1,0,0), (1,0,±1,0) Nakatani, Kimura, Anan, Ichimoto 19/27

  20. Remotely controllable turret Circuit Turret Control circuit Backflow preventer Battery Solar cell on the entrance window of DST Control circuit PC Wireless in observation room Wireless 20/27

  21. Observation 21/27

  22. DST instrumental polarizationCaⅡ854.2 nm Red : observation Black : DST model Q=U=V=0 I = +Q I = −Q I = +U I = −U 1 0.04 0.00 0 Q/ I −0.04 −1 1 0.04 0 0.00 U/ I −0.04 −1 1 0.024 0 V/ I 0.020 −1 0.016 20 0 60 40 20 0 −20 60 40 −20 20 20 0 20 0 60 0 60 40 60 40 40 −20 −20 −20 HA [deg] HA [deg] HA [deg] HA [deg] HA [deg] Disk center, Quiet region, continuum • pN=−0.050、τN=346°.0、pC=0.003、τC=27°.5 + stray 3% • Fitting residual 〜 0.001 at I2>>Q2+U2+V2 22/27

  23. DST instrumental polarization5 parameters −0.01 −0.02 pN −0.04 −0.05 0 −10 τN[deg] −20 −30 0.02 0.00 pC −0.02 −0.04 40 τC[deg] 20 0 0.08 0.04 s 0.00 600 400 800 1000 1200 Telescope position Red : west Blue: east Wavelength [nm] 23/27

  24. Flare Kernel Ca II (854 nm) Hα image 1.0 I 0.6 0.04 0.00 Q/ I −0.04 0.04 U/ I 0.00 −0.04 Slit 0.02 V/ I 0.00 −0.02 854.0 855.0 854.5 Wavelength [nm] Polarization sensitivity (V/I):〜10−3 [[Resolution]] λ :0.07 Å/pix Slit :0.8 arcsec/pix T :〜19 sec Solid line : after calibration Dotted line : before calibration 24/27

  25. Polarization sensitivity (V/I):〜10−3 [[Resolution]] λ :0.03 Å/pix Slit :0.6 arcsec/pix T :〜28 sec Umbral oscillation 1083 nm DST Hα Slit position I Q/ I Si Si Wavelength [pix] Wavelength [pix] He He H2O H2O Slit Slit U/ I V/ I Si Si Wavelength [pix] Wavelength [pix] He He H2O H2O Slit [pix] Slit [pix] 25/27

  26. Umbral oscillation I V/ I 8000 8000 6000 6000 Time [sec] Time [sec] 4000 4000 2000 2000 0 0 10834 10830 10832 10828 10834 10826 10830 10826 10828 10832 Wavelength [Å] Wavelength [Å] 26/27

  27. Summary • Modulator, Analyzer, and detector • A rotating achromatic waveplate & Wollaston prisms • Wide wavelength range (400 〜 1100 nm) • Systematic error of QUV/I 〜10−4 • To achieve photon noise 〜10−3〜30 sec (visible), 〜60 sec (near infrared) • DST instrumental polarization • We developed DST polarization model for wide wavelength range • Accuracy (cross-talk) 〜10−3at I2 >> Q2+U2+V2 Slit Modulator / Analyzer 27/27 Vertical Spectrograph

  28. Thank you for listening

  29. Summary • Modulator/Analyzer • a rotating achromatic waveplate & Wollaston prisms • Systematic error of QUV/I 〜10−4 • DST instrumental polarization • We developed DST polarization model • Accuracy (cross-talk) 〜10−3 at I2 >> Q2+U2+V2 • But we need re-calibration by using observed profiles

  30. 超広帯域波長板 Astropribor Achromatic True Zero-Order Waveplates (APAW)Astropribor Super-Achromatic True Zero-Order Waveplates (APSAW) Quartz zero-order 420 700 560 1120nm 840 980 http://astropribor.com/content/view/25/33/ APSAW f25mm ~ 3000ユーロ 5 birefringent polymers

More Related