1 / 43

Obserwowalność i odtwarzalność

Obserwowalność i odtwarzalność. System dyskretny. System ciągły. Obserwowalność/odtwarzalność określa możliwość jednoznacznego określenia stanu systemu w oparciu pomiary przez skończony przedział czasu sygnałów wejścia i wyjścia.

aman
Download Presentation

Obserwowalność i odtwarzalność

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Obserwowalność i odtwarzalność System dyskretny System ciągły Obserwowalność/odtwarzalność określa możliwość jednoznacznego określenia stanu systemu w oparciu pomiary przez skończony przedział czasu sygnałów wejścia i wyjścia Znaczenie: znajomość stanu początkowego i wejścia systemu pozwala zrekonstruować całą trajektorię stanu w oparciu o równania stanu

  2. Systemy ciągłe Obserwowalność stanu Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny

  3. Obserwowalność systemu ciągłego liniowego stacjonarnego Twierdzenie OSC LS1 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu

  4. Wymiar macierzy obserwowalnośći: nqxn; n – wymiar stanu, q – wymiar wyjścia Dla q=1 macierz obserwowalności jest macierzą kwadratową i dla sprawdzenia obserwowalności wystarczy sprawdzić nieosobliwość macierzy obserwowalności

  5. Inne testy obserwowalności systemów ciągłych Dodatek A

  6. Obserwowalność a przekształcenia podobieństwa Obserwowalność zostaje zachowana podczas transformacji podobieństwa

  7. Odtwarzalność stanu Stan odtwarzalny Stan systemu liniowego jest odtwarzalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest odtwarzalny, mówimy, że system jest całkowicie odtwarzalny lub krócej odtwarzalny

  8. Dla systemów ciągłych obserwowalność i odtwarzalność są równoważne Odtwarzalność systemu ciągłego liniowego stacjonarnego Twierdzenie OtSCLS1 System liniowy stacjonarny jest odtwarzalny wtedy i tylko wtedy, gdy macierz odtwarzalnośći, nazywana macierzą odtwarzalności Kalmana ma rząd n, tzn. rząd systemu

  9. Systemy dyskretne Obserwowalność stanu Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny

  10. Obserwowalność systemu dyskretnego liniowego stacjonarnego Twierdzenie OSD LS1 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu

  11. Inne testy obserwowalności systemów dyskretnych Dodatek B

  12. Dla systemów dyskretnych obserwowalność i odtwarzalność nie są równoważne Odtwarzalność systemu dyskretnego liniowego stacjonarnego Twierdzenie OtSDLS1 System liniowy stacjonarny jest odtwarzalny wtedy, gdy macierz odtwarzalności, nazywana macierzą odtwarzalności Kalmana ma rząd n, tzn. rząd systemu

  13. Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych Przykład 1 Mamy system Liniowy, stacjonarny, 1 – wejście, 1 - wyjście

  14. Transmitancja Zera i bieguny transmitancji Transmitancja po redukcji

  15. Schemat blokowy modelu przestrzeni stanu

  16. Transformacja do postaci diagonalnej Schemat blokowy modelu w nowej przestrzeni stanu

  17. Cztery różne statusy zmiennych stanu: - v1 można na niego wpływać sterowaniem u i można go obserwować z wyjścia y - v2 nie można na niego wpływać sterowaniem u, ale można go obserwować z wyjścia y - v3 można na niego wpływać sterowaniem u, ale nie można go obserwować z wyjścia y - v4 nie można na niego wpływać sterowaniem u, ani nie można go obserwować z wyjścia y

  18. Można wyróżnić cztery podsystemy: - związany ze zmienną stanu v1 sterowalny i obserwowalny - związany ze zmienną stanu v2 niesterowalny, ale obserwowalny - związany ze zmienną stanu v3 sterowalny, ale nieobserwowalny - związany ze zmienną stanu v4 niesterowalny i nieobserwowalny Stany niesterowalne i nieobserwowalne mogą być alb stabilne, albo niestabilne System, którego wszystkie stany niesterowalne są stabilne jest nazywany stabilizowalnym System, którego wszystkie stany nieobserwowalne są stabilne jest nazywany wykrywalnym

  19. Dekompozycja na podprzestrzenie sterowalne/osiągalne Jeżeli system jest niesterowalny/nieosiągalny można go zdekomponować na część sterowalną i niesterowalną Twierdzenie o dekompozycji na podprzestrzenie sterowalne Jeżeli system liniowy stacjonarny o macierzach A, B i C nie jest sterowalny (tzn. A jest wymiaru nxn i rank(Mc = p < n) wówczas może być znalezione przekształcenie podobieństwa takie, że macierze systemu po transformacji mają postać gdzie, , a para macierzy {AC, BC} jest sterowalna, oraz

  20. Dodatek C – Sposób znajdowania macierzy przekształcenia podobieństwa i przykład

  21. Dekompozycja na podprzestrzenie obserwowalne/odtwarzalne Jeżeli system jest nieobserwowalny można go zdekomponować na część obserwowalną i nieobserwowalną Twierdzenie o dekompozycji na podprzestrzenie obserwowalna Jeżeli system liniowy stacjonarny o macierzach A, B i C nie jest obserwowalny (tzn. A jest wymiaru nxn i rank(Mo = p < n) wówczas może być znalezione przekształcenie podobieństwa takie, że macierze systemu po transformacji mają postać gdzie, , , a para macierzy {Ao, Bo} jest obserwowalna, oraz

  22. Dodatek D – Sposób znajdowania macierzy przekształcenia podobieństwa i przykład

  23. Dziękuję za uczestnictwo w wykładzie i uwagę

  24. Dodatek A Inne testy sterowalności systemów ciągłych

  25. Twierdzenie OSC LS2 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy nie istnieje żadem prawostronny wektor własny macierz A, taki że co oznacza, że żaden wektor własny macierz A nie jest ortogonalny do wszystkich kolumn macierz C

  26. Twierdzenie OSC LS3 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz o wymiarze (r+n)xn ma rząd n dla dowolnego zespolonego skalara s Test obserwowalności w oparciu o twierdzenia 2 i 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a

  27. Twierdzenie OSC LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest obserwowalny wtedy i tylko wtedy, gdy macierz C nie ma kolumn zerowych

  28. Dodatek B Inne testy obserwowalności systemów dyskretnych

  29. Twierdzenie OSD LS2 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy nie istnieje żadem prawostronny wektor własny macierz AD, taki że co oznacza, że żaden wektor własny macierz AD nie jest ortogonalny do wszystkich kolumn macierz CD

  30. Twierdzenie OSD LS3 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz o wymiarze (r+n)xn ma rząd n dla dowolnego zespolonego skalara z Test sterowalności w oparciu o twierdzenia 2 i 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a

  31. Twierdzenie OSD LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest obserwowalny wtedy i tylko wtedy, gdy macierz CDnie ma kolumn zerowych

  32. Sposób znajdowania macierzy przekształcenia podobieństwa i przykład Dodatek C

  33. Macierz transformacji Q może być utworzona w następujący sposób: Macierz MC ma wymiar n x nm, a ponieważ jest rządu p, można spośród jej kolumn wybrać p kolumn liniowo niezależnych Załóżmy, że będą to kolumny Następnie wybieramy n – p wektorów tak, aby macierz była nieosobliwa

  34. Przykład 1. Rozważamy system dwuwymiarowy ( dwa wejścia, dwa wyjścia) Macierz sterowalności Kalmana Rząd macierzy Kalmana System jest niesterowalny

  35. Dwie pierwsze kolumny macierzy sterowalności są liniowo niezależne, dobierzemy wektor Wówczas oraz Macierze systemu po transformacji podobieństwa

  36. Macierze podsystemu sterowalnego Niesterowalna część systemu opisana równaniem stanu Macierz transmitancji systemu przed i po transformacji

  37. Związki pomiędzy zmiennymi stanu Wartość własna części niesterowalne wynosi System jest stabilizowalny

  38. Sposób znajdowania macierzy przekształcenia podobieństwa i przykład Dodatek D

  39. Macierz transformacji P może być utworzona w następujący sposób: Macierz Mo ma wymiar nr x n, a ponieważ jest rządu p, można spośród jej wierszy wybrać p wierszy liniowo niezależnych Załóżmy, że będą to kolumny Następnie wybieramy n – p wektorów tak, aby macierz n x n była nieosobliwa

  40. Przykład 2. Rozważamy system dwuwymiarowy ( 2 wejścia, dwa wyjścia) System jest sterowalny lecz nieobserwowalny – macierz obserwowalności Kalmana Rząd macierzy Kalmana System jest nieobserwowalny

  41. Dwa pierwsze wiersze macierzy obserwowalności są liniowo niezależne, dobierzemy wektor Wówczas oraz Macierze systemu po transformacji podobieństwa

  42. Macierze podsystemu obserwowalnego Macierz transmitancji systemu przed i po transformacji

  43. Wartości własne systemu oryginalnego Podsystemu obserwowalnego Wartość własna części nieobserwowalnej wynosi System jest niewykrywalny

More Related