1 / 30

JEM-EUSO space mission for the measurement of Ultra – High Energy Cosmic Rays

JEM-EUSO space mission for the measurement of Ultra – High Energy Cosmic Rays. 남신우 , 김지은 , 나고운 , 양종만 , 오세지 , 정수민 , 정애라 , 정태신 , 박재형 , 박일흥. 이화여자 대학교. EUSO (Extreme Universe Space Observatory) JEM-EUSO (EUSO at Japanese Experiment Module of International Space Station).

amie
Download Presentation

JEM-EUSO space mission for the measurement of Ultra – High Energy Cosmic Rays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. JEM-EUSO space mission for the measurement of Ultra–High Energy Cosmic Rays 남신우, 김지은, 나고운, 양종만, 오세지, 정수민, 정애라, 정태신, 박재형, 박일흥 이화여자 대학교

  2. EUSO (Extreme Universe Space Observatory) • JEM-EUSO (EUSO at Japanese Experiment Moduleof International Space Station)

  3. 그림 1). 지구에서 관측된 고에너지 입자의 에너지에 따른 분포 (Nagano & Watson 2000). 그림 1의 y-축에 E3을 곱한 결과이다. Cosmic Ray Flux GZK cutoff: 5 x 10 19 eV 4

  4. Direct Evidence of CR Acceleration by SNR Shock Wave Cas-A supernova remnant in X-rays HESS image of a supernova shell in TeV gamma rays

  5. Candidates for UHECR Accelerator ?

  6. e+ ne 2.7K CMB γ m+ π+ proton nm - E = 1020 eV nm neutron - e- proton ne 0.6 x 10-27 cm2 GZK Process Cosmic Microwave Background 2.725 K 410 photons / cm3

  7. Energy Loss by Cosmic Micro Wave Background Process Cutoff Energy Mean free path P p+ g2.7K -> p0+X >5x1019 eV 50Mpc N A+ g2.7K -> D+++X >5x1018 eV/n 100Mpc g g + g2.7K >1014 eV(at 1020eV) 10Mpc(at 1020eV) nn+ n1.95K ->(W/Z0)+X >4x1022 eV 40Gpc • Protons: photopion threshold @ ~50 EeV • Nuclei: photodisintegration above 50 EeV • Photons: pair production threshold @ ~200 TeV • Neutrinos: no problem! For E>100 EeV, the source must be within ~50 Mpc

  8. The Puzzle! Abu-Zayyad etal, APh, 18, 237 (2002) Experimental data ofAGASA are against the GZK Cosmic Ray cut off. Data of HiRes confirm the cut off. Detectors of the next generation should solve the problem.

  9. DeMarco and Blasi 2004

  10. CR above 1020 eV : Pointer to the source EECR above 1020eV does not deflect by galactic Magnetic Field AGASA EUSO - More than 1,000 : E>1020eV - Several dozen clusters: Expected f. AGASA - All SKY Observation

  11. Neutrino Shower in Atmosphere Detector

  12. EXPLORATION : Extra-dimension Neutrino cross section gets very high with higher dimension 100 mb at 1020 eV

  13. Extensive Air Shower (EAS) • Initiated by Hadronic int. of • Primary with Air Molecules • Two components of Shower: • 1. collimated hadronic core • (charged pions  source of • muons) • 2. EM subshowers along the axis • from pi^0 decays • (90% of shower) • ~1010 particles at Ground • from 1019 eV primary CR • Shower Detection • - Fluorescence UV photons • - Particles (muon,e+,e-,photon) • - Cerenkov Radiation

  14. How to detect EAS

  15. by Boris Khrenov 2006

  16. Principle of EUSO :Use whole atmosphere as a detector TPC-like natural chamber 1020 eV

  17. JEM-EUSO Telescope on ISS JEM-EUSO Telescope will be attached to Exposure Facility of Japanese Experiment Module (JEM/EF) of ISS in about 2013 Phase-A : 2007-2008, Phase-B/C : 2009-2012 Vertical Mode Tilted Mode Larger effective area (x5) with ~35°tilt

  18. JEM-EUSO EUSO Electromics Structure Focal Surface Optics

  19. Progress: Refractive-Diffractive Optics well designed • Optics Requirements • FoV  30° • Pupil entrance pupil  2 m • F/#  1.0 • Spot dimension ~ 0.1° • Spectral range 300-400 nm Takizawa Ray tracing x all the losses > +100% > +70% #19

  20. R8900-03-M36baseline for ESA-EUSO Weak focusing electric field Sensitive area ~85% of the physical dimension (~26.226.2mm2) Weight = 27.3g Gain = 3x106 @ -900V Focal Surface Efficiency = Filling Factor 0.85 x Quantum Efficiency 0.20 – 0.25 x Photoelectron Collection Efficiency 0.7 = 0.12 – 0.15

  21. (164PDMs = 0.2M pixels) MAPMT (6x6 pixels) 26.2 mm Hierarchy of Focal Surface 2.26 m max A pixel side = 0.77 km on ground

  22. x-t view y-t view Image of Air-shower on Focal Surface simulation Y photoelectrons X time(sec) 50 events of 1020eV proton showers are superimposed on the EUSO focal surface with 192 k pixels. Proton E=1020eV, =60º GTU = 2.5 sec 4

  23. JEM-EUSO Collaboration 9 countries, 45 institutions, 116 members • Japan :T. Ebisuzaki, Y. Uehara, H. Omori, Y. Kawasaki, M. Sato, Y. Takizawa, T. Wada, K. Kawai (Riken), F. Kajino, M. Sakata, H. Sato, Y. Yamamoto, N. Ebizuka, (Konan Univ.), Y. Miyazaki (Fukui Inst. Tech.), N. Sakaki, T. Shibata (Aoyama Gakuin Univ.), N. Inoue (Saitama Univ.), Y. Uchihori (NIRS), K. Nomoto (Tokyo), Y. Takahashi (Tohoku Univ.), M. Takeda (ICRR, Univ. Tokyo), Y. Arai, Y. Kurihara, H. Shimizu, J. Fujimoto (KEK), S. Yoshida (Chiba Univ.), K. Asano, S. Inoue, Y. Mizumoto, J. Watanabe (NAOJ), H. Ikeda, M. Suzuki, T. Yano (ISAS, JAXA), T.Murakami, D. Yonetoku (Kanazawa Univ.), N. Sugiyama (Nagoya), Y. Ito, Y. Muraki (STEL, Nagoya Univ.), S. Nagataki (YITP, Kyoto Univ.), A. Saito(Kyoto Univ.), S. Abe, M. Nagata (Kobe Univ.), T. Tajima (KPSI, JAEA) • USA : J. H. Adams, S. Mitchell, M.J. Christl, J. Watts Jr., A.English (NASA MSFC) ,Y. Takahashi, D. Gregory, M. Bonamente, P. Readon, V. Connaughton, K. Pitalo, J.Hadaway, J. Geary,R. Lindquist, P. Readon (Univ. Alabama in Huntsville), H. Crawford, C. Pennypacker (LBL, Univ. California, Berkeley),K. Arisaka, D. Cline (UCLA), T. Weiler, S. Czorna (Vanderbilt Univ.) • France: J-N. Capdevielle, P. Gorodetzky, P. Salin (CNRS), J. Dolbeau (Coll. de France), T. Patzak, F. Vanucci(Univ. Paris 7), J. Weisbard (IN2P3) • Germany: M. Teshima, T. Schweizer(Max Planck Munich), A. Santangelo (Tuebingen), P. Biermann (MPI Bonn), K. Mannheim (Wuerzburg) • Italy: S. Bottai. P. Spillantini, A. Zuccaro (Firenze), A. G. Amrosi, Anzalone, O. Catalano, G. D'Ali Saiti, M.C. Maccarone, P. Scarsi, B. Sacco (Palermo), B. Alpat, R. Battiston, B. Bertutti, E. Fiandrini, P. Zuccon (Perugia), M. Casolino, M.P. De Pascale, A. Morselli, P. Picozza, R. Sparvoli (Roma 2), M. Bertania, A. Cappa, M. Dattoli, P. Galeotti, P. Vallania, C. Vigorito, (Torino), A. Gregorio (Trieste) • Mexico: G. Medina-Tanco (Mexico UNAM), H. Salazar (Puebla) • Republic of Korea : S. Nam, I. H. Park, J.H. Park, J.Yang (Ehwa W. Univ.), D.H. Kim(Aju Univ) • Russia: Garipov G.K., Khrenov B.A., Klimov P.A. Panasyuk M.I., Yashin I.V. (SINP MSU), Naumov, D., Tkachev. L (Dubna JINR) • Switzerland: A. Maurissen, V. Mitev (Neuchatel, Switzerland)

  24. List of Contributions (2007.5)

  25. Data Acquisition System Outline 2nd Level Trigger PDM Control Board FPGA Track Trigger Cluster Control Board DSP Fine Trigger Mission Control Board MPU Operation Control FEE ASIC+FPGA Count 21CCB 9EC 8PDM 1,476 EC 164 Boards 21 Boards 2 – 5 Boards Data Trans: LVDS with Original Protocol McBSP within DSP Network (Multichannel Buffered Serial Port) LVDS with SpaceWire (ECSS-E-50-12A)

  26. Photo Detector Module (PDM) MAPMT 36PMTx36ch HV board ASIC • 9 Elementary Cell (EC) , 1 HV module, 9 HV divider #26

  27. Track Trigger

  28. Track Trigger

  29. Efficiency of Track Trigger (Simulation)

  30. Address generators Memories accumulators Crossbar switch Work in progress : Track Trigger Circuit Search for a track in trials of 16 (predefined) directions for every red pixels in a GTU data (2.5us) FPGA Xilinx / Actel Qpro Virtex2 Rad-Tolerant 105MHz

More Related