1 / 44

Origami Chip-on-Sensor Design: Progress and New Developments

Origami Chip-on-Sensor Design: Progress and New Developments. TWEPP 2012, Oxford University. Outline. Introduction Status 2-DSSD Module Cooling Summary. Motivation. SVD Requirements : Twice as large Low material budget Low occupancy Fast readout (APV25) High SNR

anise
Download Presentation

Origami Chip-on-Sensor Design: Progress and New Developments

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Origami Chip-on-Sensor Design:ProgressandNew Developments TWEPP 2012, C. Irmler (HEPHY Vienna) TWEPP 2012, Oxford University

  2. Outline • Introduction • Status • 2-DSSD Module • Cooling • Summary TWEPP 2012, C. Irmler (HEPHY Vienna)

  3. Motivation • SVD Requirements: • Twice as large • Low material budget • Low occupancy • Fast readout (APV25) • High SNR • Chips closest to sensor strips Origami Chip-on-Sensor Concept • Belle II SVD ( M. Friedl) • Super KEKB • 7 GeV e- on 4 GeV e+ • Center of mass energy: Y(4S) (10.58 GeV) Belle II Super KEKB ~1 km in diameter Linac About 60km northeast of Tokyo TWEPP 2012, C. Irmler (HEPHY Vienna)

  4. The Origami Chip-on-Sensor Concept • CF reinforced ribs • 6” DSSD • 1mm Airex sheet • 3-layer polyimide PCB • Thinned APV25 • Connection to Strips: • PA on top side • wrapped PA for bottom • Single cooling pipe • Trade-off between material budget & SNR • 0.55 X0 (averaged) n-side p-side TWEPP 2012, C. Irmler (HEPHY Vienna)

  5. Belle II SVD Sensor underneath flex circuit End ring (support) APV25 chips Origami ladder Pitch adapter bentaround sensor edge Cooling pipe TWEPP 2012, C. Irmler (HEPHY Vienna)

  6. Belle II SVD • 4 layers of 6” DSSDs • Radii: 38/80/105/135 mm • 2/3/4/5 sensors per ladder • Origami PCBs in L4-6 • L3 & edge sensors read out by conventional hybrids • 3 different PCB designs TWEPP 2012, C. Irmler (HEPHY Vienna)

  7. Outline • Introduction • Status • 2-DSSD Module • Cooling • Summary TWEPP 2012, C. Irmler (HEPHY Vienna)

  8. Origami PCBs 3 types of 3-layer Origami PCBs: • backward (-z), short tail • center (ce), for central sensor, long tail • forward (+z), routed along slanted sensor, complex shape -z ce +z TWEPP 2012, C. Irmler (HEPHY Vienna)

  9. Pitch Adapters • All available in single- and double-layer designs • PA0: short, n-side, glued onto Origami PCB • PA1: first half of p-side strips • PA2: second half of p-side strips Bond pads of single-layer PAs TWEPP 2012, C. Irmler (HEPHY Vienna)

  10. The Evolution of Origami Modules • 2008: Introduction of concept • 2009: Feasibility shown with 4” DSSD module • 2010: First full-size module with 6” DSSD • 2011: Re-design to fit mechanical requirements of Belle II SVD ladders, beam test with CO2 cooling, … TWEPP 2012, C. Irmler (HEPHY Vienna)

  11. 2012 • How to assemble ladder withtwo or more Origami PCBs? • Not possible sensor by sensor • Combined procedure required • 2-DSSD Origami module • 2 HPK DSSDs • Two types of Origami PCBs (-z and ce) • Single-layer PA0/PA1/PA2 2-DSSD Origami Module TWEPP 2012, C. Irmler (HEPHY Vienna)

  12. Outline • Introduction • Status • 2-DSSD Module • Cooling • Summary TWEPP 2012, C. Irmler (HEPHY Vienna)

  13. Assembly Location • Kavli IPMUInstitute for the Physics and Mathematics of the Universe • Belongs to Tokyo University • Kashiwanoha Campus • New clean room and lab for L6 ladder assembly ~30km north of Tokyo TWEPP 2012, C. Irmler (HEPHY Vienna)

  14. Team K. Kamesh (TIFR), C. Irmler (HEPHY), Y. Onuki (Tokyo U.), K. Negishi (Tohoku U.) N. Shimizu (Tokyo U.) E. Kato (Tohoku U.) TWEPP 2012, C. Irmler (HEPHY Vienna)

  15. Attaching of PA1 & PA2 • Almost unchanged procedure • PAs were aligned to sensor and then picked up with a vacuum jig • New: mask to apply glue • Ensures uniform thickness • Future: cutting plotter mask samples Graphtec CE5000-60 TWEPP 2012, C. Irmler (HEPHY Vienna)

  16. Attaching Origami PCBs • Wire bonding p-side • Placing sensors onto an assembly bench • Optical alignment (not done this time) • Attaching Airex sheets(in future: 1 per ladder) • Glue Origami PCBs • pre-assembled APV chips • first CE • then –z • Wire bonding n-side -z CE TWEPP 2012, C. Irmler (HEPHY Vienna)

  17. Bend and Glue PA1, PA2 • Already established procedure • Micro positioner with vacuum head • Masks to dispense glue • Pre-bend PA and align vacuum head • Align PA to APV and lower down • Glue curing • Followed by ~2500 wire bonds TWEPP 2012, C. Irmler (HEPHY Vienna)

  18. Final Module in Frame Top and bottom views (w/o cooling pipe) TWEPP 2012, C. Irmler (HEPHY Vienna)

  19. Outline • Introduction • Status • 2-DSSD Module • Cooling • Summary TWEPP 2012, C. Irmler (HEPHY Vienna)

  20. Cooling Pipe • Single cooling pipe forseveral ladders • Little space for connections • Outer  1.6 mm • Custom fixture to hold the pipe Cooling pipe TWEPP 2012, C. Irmler (HEPHY Vienna)

  21. Cooling Contact – Pipe on APV25 Chips Requirements: • Re-mountable cooling coil (no glue …) • Easy and safe mounting (bond wires …) • Electrically isolating • Radiation hard material • Avoid stress atsensor • Efficient heat transfer • large contact area • adjust height differences of APVs • thermally conductive gap pads TWEPP 2012, C. Irmler (HEPHY Vienna)

  22. Thermal simulations ThermallyconductiveGap Pads • Heatload/APV: 0.35W • Coolanttemperature: -20°C • Tube: stainlesssteel AISI 316L, wall 50μm • Gap pad: 86/125 Keratherm • λ [W/mK]: 1.5W/mK • Very soft, 1mm thick • Radiation hardness?  Will betested in October TWEPP 2012, C. Irmler (HEPHY Vienna)

  23. Pipe Fixture – First Concepts • Prototype 'big' screwclamp • Onepartclamp Toobulky Screws Structureis fragileandthecontactsurfaceissmall Large force necessary tosnaptubeintotheclamp TWEPP 2012, C. Irmler (HEPHY Vienna)

  24. Pipe Fixture – Improved Design Hinge clamp: • PEEK G450 • micro water jet cutting • fabrication tolerance: 0.01mm • Max. wall thickness: 20mm • Min. inner radius: 0.1mm • Disadvantage: 2 parts • First prototypes delivered • Used on 2-DSSD module TWEPP 2012, C. Irmler (HEPHY Vienna)

  25. Cooling Pipe Mounting • Clamp bases glued onto Origami PCB • Keratherm strips placed onto APV chips • Pipe put into camp bases • Clamps closed TWEPP 2012, C. Irmler (HEPHY Vienna)

  26. Final Module with Cooling Pipe TWEPP 2012, C. Irmler (HEPHY Vienna)

  27. Performance of CO2 Cooling • Three 6” Origami modules were tested in a 120 GeV beam (October 2011) • Stable operation of CO2 cooling system for 3 days • The sum of bias currents of sensors decreases from >70µA to ~20µA • Bias current of all • 3 modules vs. time Pressure reduction for lower temperature 24h • CO2 system • off 4h • CO2 system on TWEPP 2012, C. Irmler (HEPHY Vienna)

  28. 2-DSSD Origami Module Performance • A week ago: first source test of new module with CO2 cooling • So far the module works well  • Ready for beam test in October preliminary TWEPP 2012, C. Irmler (HEPHY Vienna)

  29. Outline • Introduction • Status • 2-DSSD Module • Cooling • Summary TWEPP 2012, C. Irmler (HEPHY Vienna)

  30. Summary • Origami chip-on-sensor concept adapted to fit requirements of Belle II SVD ladders • 6” sensor, three flex designs • Assembly procedure extension to full ladder • in progress • Design and first prototypes of pipe fixture • Recently assembled a 2-DSSD Origami module • Beam test and irradiation in October 2012 • Start of ladder production scheduled for summer 2013! TWEPP 2012, C. Irmler (HEPHY Vienna)

  31. Thank You TWEPP 2012, C. Irmler (HEPHY Vienna)

  32. Spare Slides TWEPP 2012, C. Irmler (HEPHY Vienna)

  33. Improved Version of One Part Clamp TWEPP 2012, C. Irmler (HEPHY Vienna)

  34. Attaching Airex 1 • We used one piece per sensor • Later we will use a single sheet per ladder 2 4 3 TWEPP 2012, C. Irmler (HEPHY Vienna)

  35. Attaching Origami hybrids • Aligned CE to sensor • Lifted it with Origami jig • Applied glue • Put back onto assembly bench • Waited until glue has been cured • Removed Origami jig • Aligned –z to sensor • Repeated from step 2. TWEPP 2012, C. Irmler (HEPHY Vienna)

  36. Attaching Origami hybrids 2 1 3 4 & 5 TWEPP 2012, C. Irmler (HEPHY Vienna)

  37. Attaching Origami CE 1 2 4 3 5 TWEPP 2012, C. Irmler (HEPHY Vienna)

  38. Attaching Origami -z TWEPP 2012, C. Irmler (HEPHY Vienna)

  39. Bend and Glue PA1, PA2 – Apply Mask 3: dispense glue 1: apply mask 4: flatten glue 5: remove mask 2 TWEPP 2012, C. Irmler (HEPHY Vienna)

  40. Pre-bend and attach stopper align vacuum head to assembly bench and PA pre-bended PA Stopper for PAs 6 design concept of PA stopper TWEPP 2012, C. Irmler (HEPHY Vienna)

  41. Align PA to APV chips Bond pads visible 7: PA to APVs 9: cure glue 8: lower down TWEPP 2012, C. Irmler (HEPHY Vienna)

  42. Thermally conductive Gap Pad • Responsible for Origami cooling: AnnekatrinFrankenberger • Selection of thermally conductive materials with different properties.  Gamma irradiation tests (@ Mol in October) TWEPP 2012, C. Irmler (HEPHY Vienna)

  43. Thermal simulations Thermallyconductive Gap Pads • Heatload/APV: 0.35W • Coolanttemperature: -20°C • Tube: stainlesssteel AISI 316L, wall 50μm • Gap pad: Sil Pad 800 Bergquist • λ [W/mK]: 1.6W/mK • HardnessShoreA: 91 • Thickness: 0.1mm goodcontact? Adjustingunevennes? TWEPP 2012, C. Irmler (HEPHY Vienna)

  44. Tube fixture Displacementsimulation Acting force 1.4N Necessary displacement UX = -0.4mm TWEPP 2012, C. Irmler (HEPHY Vienna)

More Related