1 / 19

Extraction of SUSY Parameters from Collider Data

Extraction of SUSY Parameters from Collider Data. SUSY 2008 Seoul 06/17/2008 Dirk Zerwas LAL Orsay. Introduction Measurements Reconstruction of fundamental Parameters Summary. Supersymmetry. fermion boson has “no” problems with radiative corrections (quadrat. div.)

arella
Download Presentation

Extraction of SUSY Parameters from Collider Data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Extraction of SUSY Parameters from Collider Data SUSY 2008 Seoul 06/17/2008 Dirk Zerwas LAL Orsay • Introduction • Measurements • Reconstruction of fundamental Parameters • Summary

  2. Supersymmetry • fermion boson • has “no” problems with radiative corrections (quadrat. div.) • has a light Higgs Boson (<150GeV) • interesting pheno at the TeV scale 3 neutral Higgs bosons: h, A, H 1 charged Higgs boson: H± and supersymmetric particles • Many different models: • MSSM (low scale many parameters) • mSUGRA (high scale few parameters) • DSS (SUSY with heavy scalars) • GMSB • AMB • NMSSM ~ ~ ~ ~ ~ • R-parity • production of SUSY particles in pairs • (Cascade-) decays to the lightest SUSY particle • LSP stable, neutral and weakly interacting: neutralino (χ1) • experimental signature: missing ET

  3. A typical (optimistic) point “Physics Interplay of the LHC and ILC” G. Weiglein et al gluinos and squarks (not too heavy) heavy and light gauginos ~ • τ1 lighter than the lightest χ± : • χ± BR 100% τν • χ2 BR 90% ττ • cascade: • qLχ2 q  ℓR ℓq  ℓℓqχ1 ~ ~ ~ ~ Higgs boson mass at the LEP limit light sleptons

  4. Edges at the LHC • hard jets with leptons • invariant mass: • jet-lepton • lepton-lepton-jet • lepton-lepton less statistics: 1-10fb-1 • Improvements over past studies: • full simulation and reconstruction • realistic detector description (with additional distorsions) • early Data: 0.5-10fb-1 SUSY08: Paul de Jong, Peter Wienemann, talks by CMS

  5. LHC and ILC measurements LHC: lepton energy scale 0.1% LHC: jet energy scale 1% luminosity 100fb-1 • Linear collider • e+e- collisions • up to 1TeV • LHC: • from edges/thresholds to masses: toy/fit • ILC: • direct measurements/threshold scans SPS1a for the following continue with SPS1a as example

  6. Determination of Supersymmetric Parameters from edges, masses (etc) to fundamental parameters: e.g.: mSUGRA m(Smuon) = f(m0, m1/2, tanβ) m(Chargino) = f(m1/2, tanβ,…) correlations exp and theoretical treatment of theory errors!  global ansatz necessary Beenakker et al See Allanach arXiv:0805.2088[hep-ph] for complete list • mass spectra and decays: SOFTSUSY, SUSPECT, FeynHiggs, ISASUSY,SPHENO, SDecay, SUSY-HIT, HDECAY, NMSSMtools,… • NLO cross sections from Prospino2.0,… • dark matter: micrOMEGAS, DarkSUSY, IsaRED,… Search for parameter point, determine errors including treatement of error correlations: Pioneers: G. Blair, W. Porod and P.M. Zerwas(Eur.Phys.J.C27:263-281,2003) / Allanach et al. hep-ph/0403133 FITTINO: P. Bechtle, K. Desch, P. Wienemann with W. Porod(Eur.Phys.J.C46:533-544,2006) SFITTER: R. Lafaye, T. Plehn, M. Rauch, D. Z.(Eur.Phys.J.C54:617-644,2008) GFITTER: M. Goebel, J. Haller, A. Hoecker, K. Moenig, J. Stelzer (EW fit) EW fits plus dark matter:Buchmueller et al, Phys.Lett.B657:87-94,2007 Super-Bayes: R.R. de Austri, R. Trotta, (MCMC, collider observables and dark matter…) CMSSM fits and weather forcasts: B. Allanach, K. Cranmer, C. Lester, A. Weber …

  7. Information Extraction from Standard Measurements alone Buchmueller et al: electroweak plus dark matter, bsγ, bμμ CMSSM χ2 slightly better than SM mh=110+8-10±3GeV SUSY08: Sven Heinemeyer Allanach et al: Predict SUSY cross sections at LHC: ~fb  μ and B (high scale parameters) Bayesian measure: same order of magnitude for all parameters (no scale imposed nor unification) slightly higher cross sections in non-Bayesian approach (Profile Likelihood ~maximum instead of measure)

  8. Lagrangian@GUT scale: mSUGRA Hypothesis: SUSY particles discovered and discrete quantum numbers (spin) measured • First question: • do we find the right point? mSUGRA advantage: few parameters, testing ground for studies of principles disadvantage: starts at GUT scale and adds RGE extrapolation, not the most general lagrangian brute force method GRID: disadvantage: NP advantage: computer industry (OECD?) brute force method MINUIT: disadvantage: starting point Sign(μ) fixed ~300 toy experiments: convergence OK with MINUIT alone for LHC (largest errors)!

  9. Lagrangian@GUT scale: mSUGRA • Fittino: • Simulated annealing • SFitter: • Markov Chains (efficient sampling in high dimensions, linear in number of parameters) • Full dimensional exclusive likelihood map with the possibility of different types of projections: • marginalisation (Bayes) introduces a measure • profile likelihood (Frequentist approach) Ranked list of minima: • secondary minima exist (LHC) • discarded by χ2 alone • interplay with top mass (parameter!)

  10. mSUGRA: Errors RFit Scheme: Höcker, Lacker, Laplace, Lediberder • No information within theory errors: flat distribution • use edges not masses (improvement: 10x)! • e-scale correlations at LHC 25-50% impact on error • remember the standard model (top quark mass 1GeV at LHC) 10%.

  11. mSUGRA: Errors LHC and ILC • ILC improves by 3-4x on LHC • LHC+ILC better than any machine alone SFitter • Fittino: • the beginning 1 fb-1 • 1 year low lumi 10 fb-1 • 3 years nominal 300 fb-1 • and then the ILC: • theory errors impact the expected precision at all machines also at LHC SPA project: precision of the theoretical calculations Eur.Phys.J.C46:43-60,2006

  12. The LHC neutralino enigma • The uniqueness problem: • LHC measures the neutralino index in SPS1a? • permute: χ4 with χ3 • Exchanging χ3 and χ4 leads to a secondary minimum • M0 and M1/2 ok, but tanβ and A0 more than 2-3σ from nominal values • so in principle need ILC to see which neutralino are present…. • the predicted mass of χ4 is about 400GeV • the predicted branching ratios would lead us to expect more χ4 thanχ3 in the measurement channel in disagrement with the observation • general rule: beware of the “hidden” measurements……

  13. MSSM 19 parametersat the EW scale no unification of the 1st and 2nd generation • mix techniques: • markov flat full Parameter space • MINUIT in 5 best points • Markov flat gaugino-higgsino space • MINUIT on 15 best points • BW pdf on remaining parameters • MINUIT on 5 best solutions (all parameters) • 3 neutralino masses at LHC • M1, M2, μ • 8 fold ambiguity in Gaugino-Higgsino subspace at the LHC! • LHC+ILC: • all parameters determined • several parameters improved

  14. MSSM Running up to the GUT scale: G. Blair, W. Porod and P.M. Zerwas (Eur.Phys.J.C27:263-281,2003) P. Bechtle, K. Desch, P. Wienemann with W. Porod (Eur.Phys.J.C46:533-544,2006) SPS1a (SPA1): dashed bands: today’s theory errors included unification measured from low energy (TeV) data from LHC+ILC remember: all results valid within a well defined model/hypothesis

  15. A difficult example: SUSY with heavy scalars Arkani-Hamed & Dimopoulos 2004 Giudice, Romanino 2004 N. Bernal, A. Djouadi, P. Slavich JHEP 0707:016,2007 E. Turlay et al. (Proceedings BSM-SUSY les Houches 2007) • Phenomenology: • scalar Mass scale 104 to 16 GeV • scalars are at MS • fermions O(TeV) • SM Higgs h • effective theory below MS • at MS matching with complete theory • and standard RGE • DSS parameters: • MS: decoupling scale, scalar masses • m1/2: gaugino mass parameter • μ: Higgs mass parameter • At: trilinear coupling at MS • tanβ: mixing angle between Higgs at MS ATLAS/CMS talks: Paul de Jong, Tapas Sarangi, Daniel Teyssier Parameter determination at LHC possible

  16. Connection Colliders-Cosmology E. Baltz,M.Battaglia, M.Peskin, T.Wizansky: Phys.Rev.D74:103521,2006 Nojiri et al/Dutta et al • SUSY breaking parameters (determined) • spectrum and couplings (deduced) • darkSUSY, isaRed or micrOMEGAs • ΩCDMh2=nLSP*mLSP (relic density) NASA/WMAP science team SPS1a’ Temperature range: ±200μK • Measurement of the fluctuations of the cosmic microwave background • WMAP • ΩCDMh2=0.127±0.01 (astro-ph/0603449) • Planck • ΩCDMh2 ~ 2% • MSUGRA SPS1a (central value irrelevant) • LHC : Ωh2 = 0.19060.0033 • LHC+ILC: Ωh2 = 0.19100.0003 • % precision at LHC, permil LHC+ILC • theory errors! Comparable precision of CMB and Collider data possible

  17. Summary • LHC alone could provide a wealth of measurements for SUSY • LHC+ILC is the dream team • will collider dark matter property predictions • be comparable to WMAP/Planck? • LHC is starting now, is SUSY just around the corner? • Hope to start testing grand unification soon! SFitter+Suspect Thank you: Klaus Desch, Remi Lafaye, Tilman Plehn, Michael Rauch, Laurent Serin, Mathias Uhlenbrock, Peter Wienemann

  18. MSSM • LHC: • can assign errors on badly measured parameters • LHC+ILC: • all parameters determined • several parameters improved

More Related