1 / 29

E. Jericha, H. Leeb, A. Pavlik

Cross section measurements for light charged particle emission induced by neutrons in the 1 MeV – 100 MeV+ energy range at n_TOF. E. Jericha, H. Leeb, A. Pavlik. Atominstitut, Vienna University of Technology Institut für Isotopenforschung und Kernphysik, University of Vienna.

arnold
Download Presentation

E. Jericha, H. Leeb, A. Pavlik

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cross section measurements forlight charged particle emission induced byneutrons in the 1 MeV – 100 MeV+ energy range at n_TOF E. Jericha, H. Leeb, A. Pavlik Atominstitut, Vienna University of Technology Institut für Isotopenforschung und Kernphysik, University of Vienna

  2. Experimental facilites • General considerations for charged particle reactions

  3. Motivation for (n,xc) studies • information on nuclear reaction mechanisms • experimental constraints for nuclear model calculations • design of nuclear facilities (e.g. ADS and fusion reactors) • gas production and subsequent embrittlement of materials • maybe interest in astrophysics (?)

  4. WNR, Los Alamos R.C. Haight et al., Proc. Nuclear Data Conf., Gatlinburg 1994, pp.154

  5. Detectors in the WNR set-up DE E, DE E c.p. low pressure proportional counter 5 cm Ø 25 torr Xe 10 torr Ar + 10% CO2 silicon 450 mm2 500 µm timing information CsI(Tl) 5 x 5 cm2 1 cm photodiode readout 10 m – 6x104 n/cm2/s/MeV / 5x5 cm2 – 1.5x106 n/MeV/s

  6. Fe-56 (n,xa) s(En) S.M. Sterbenz et al., Proc. Nuclear Data Conf., Gatlinburg 1994, pp.314

  7. Fe-56 (n,xa) ds/dW, ds/dE, d2s/dWdE S.M. Sterbenz et al., Proc. Nuclear Data Conf., Gatlinburg 1994, pp.314

  8. Centre de Recherches du Cyclotron Louvain-la-Neuve

  9. Detectors in the CRC set-up DE E c.p. NE102 plastic scintillator Ø 4 cm 100 µm timing information CsI(Tl) Ø 3.8 cm 2.2 cm photomultiplier 3.28 m – 105 n/cm2/s (2 MeV FWHM) / 6x6 cm2 ~ 106 n/MeV/s

  10. Bi-209 (n,xc) / CRC, Louvain-la-Neuve 105 n/cm2/s, 6x6 cm2 Bi-209 (0.4 mm), En = 62.7 MeV, DEFWHM = 2 MeV E. Raeymackers et al., Nucl. Phys. A 726 (2003) 210

  11. CsI pulse shape DE-E c.p. discr.

  12. Bi-209 (n,xc) c = p, d, t, a s(En) Bi-209 (n,xc) c = p, d, t, a ds/dE En = 62.7 MeV E. Raeymackers et al., Nucl. Phys. A 726 (2003) 210

  13. Al-27 (n,xp) d2s/dWdE En = 62.7 MeV S. Benck et al., PRC 58 (1998) 1558

  14. Al-27 (n,xa) d2s/dWdE En = 62.7 MeV S. Benck et al., PRC 58 (1998) 1558

  15. Fe-nat (n,xc) s(En) I. Slypen et al., J. Phys. G 30 (2004) 45

  16. Fe-nat (n,xc) s(En) continued Differences attributed to contributions from below 15 MeV I. Slypen et al., J. Phys. G 30 (2004) 45

  17. The Svedberg Laboratory, Uppsala MEDLEY Detector

  18. Telescopes in the MEDLEY Detector E: CsI(Tl) 4 cm Ø 5 cm photomultiplier DE1: silicon 2.4 cm Ø 50-60 µm DE2: silicon 450 mm2 400-500 µm 10 m – 5x104 n/cm2/s (1 MeV FWHM) / Ø 8 cm ~ 1.2x106 n/MeV/s S. Dangtip et al., Nucl. Instr. Meth. A 452 (2000) 484

  19. Light charged particle discrimination S. Dangtip et al., Nucl. Instr. Meth. A 452 (2000) 484

  20. Fe-nat (n,xc) Pb-nat (n,xc) c = p, d, t, 3He, a ds/dE En = 96 MeV DEFWHM = 1 MeV V. Blideanu et al., Phys. Rev. C 70 (2004) 014607

  21. Fe-nat (n,xc) Pb-nat (n,xc) c = p, d, t, 3He, a ds/dW En = 96 MeV V. Blideanu et al., Phys. Rev. C 70 (2004) 014607

  22. Specific considerations for n_TOF

  23. Proposed layout for n_TOF scattering chamber with charged particle detectors beam monitor chamber fission detectors 1 MeV – 100+ MeV: detector events <1 – 3 µs after the g flash Proposed operation mode: in combination with fission detectors (perhaps also in combination with capture detectors possible?)

  24. Possible layout of the scattering chamber Charged particle detector set-up for n_TOF sample Si-Si-CsI telescopes for light charged particle detection multiple telescopes per emission angle proton recoil telescopes for neutron beam monitoring Scattering chamber: pressure < 10-5 mbar

  25. Comparison of neutron intensities • WNR 1.5x106 n/MeV/s • CRC ~106 n/MeV/s • TSL 1.2x106 n/MeV/s • n_TOF 2.7x106 n/7x1012 p, 1 MeV…100 MeV, fission collimator

  26. per 7x1012 p in 4p solid angle Estimated reaction rates

  27. per 3x1018 p in 1 detector of Ø 4 cm with 20 cm sample-detector distance Estimated detector events

  28. Estimated events for Fe-56 (data from ENDF) per 3x1018 p in 4 detectors of Ø 4 cm with 20 cm sample-detector distance

  29. What seems feasible? • production cross sections s(En) for (n,xc) • c = p, a, d • c = d, t, 3He • differential cross sections ds/dW, ds/dE • double differential cross sections ?

More Related