1 / 29

The Role of Chemistry in Innovation Chemistry for Future Energy Supply

The Role of Chemistry in Innovation Chemistry for Future Energy Supply. K. Wagemann, DECHEMA e.V. Two hot topics in the present political discussions:. Energy Supply Climate Change (Adaptation & Mitigation). Energy in the SusChem Implementation Action Plan. Energy

arnold
Download Presentation

The Role of Chemistry in Innovation Chemistry for Future Energy Supply

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Role of Chemistry in InnovationChemistry for Future Energy Supply K. Wagemann, DECHEMA e.V.

  2. Two hot topics in the present political discussions: Energy Supply Climate Change (Adaptation & Mitigation)

  3. Energy in the SusChem Implementation Action Plan • Energy • Alternative energy sources • Photovoltaic • Fuels production from biomass • Fuel cells • (Metal)nanoparticles as fuel • Wind power • Energy conservation • Efficient lighting • Insulation • Energy storage • Batteries • Gas storage • Supercapacitors

  4. Energy in the SusChem-Deutschland IAP • Photovoltaics • Fuel cells • Efficient use of energy - inorganic LEDs • Efficient use of waste heat from industrial plants • Li-Ion batteries for stationary and mobile applications • Super caps • H2 production and storage • Exhaust gas treatment and catalysis • Light weight materials • Biobutanol

  5. Chemistry and Energy • German Coordination Group „Chemical aspects of energy research“: • DECHEMA - Gesellschaft für Chemische Technik und Biotechnologie e.V. • DBG – Deutsche Bunsen Gesellschaft für Physikalische Chemie e.V • GDCh – Gesellschaft Deutscher Chemiker e.V. • DGMK – Deutsche Wissenschaftliche Gesellschaftfür Erdöl, Erdgas und Kohle e.V. • VDI-GVC – VDI-Gesellschaft Verfahrenstechnikund Chemieingenieurwesen • VCI – Verband der Chemischen Industrie e.V.

  6. Position Paper

  7. Position PaperThesis • The demand for chemical solutions will increase: • Fuel cells: Catalysts, Electrolytes, Membranes • Solar cells: Organic, Polymeric, Easy to Process Systems • Batteries: Electrodes, Electrolytes • Thermoelectrica: Nanostructured Materials • CO2-Sequestration: Absorption, Chemical Conversion • Heavy Oils and Coal (and Biomass): Conversion to Fuels

  8. The role of chemistry Energy Supply Energy storage Fuels Bioenergy Photovoltaics Fuel cells Thermoelectrics Collectors H2-Production Mobile batteries Stationary batteries Supercaps Chemicals CO2-Utilisation OLEDs Superconductors Lightweight materials Thermal insulation Catalysis Microreaction techn. New reaction media Process integration Energy efficientproductionprocesses Efficient use of energy

  9. Chemistry has a role for the future energy supply!

  10. Backup Backup

  11. Chemistry-related CO2-Emissions Chemistry Industry (total)  = 861 Mio. t CO2 Energy Numbers of 2004, Source: Ministry of Economics and Technology

  12. Production of Hydrogen • Alternatives • Direct thermal water splitting (without catalyst: T > 2.500°C) • catalytic • redoxcatalytic • Photocatalytic water splitting at solid surfaces • Biomimetic photosystems in liquid phase (Ru-Systems) • Biohydrogen

  13. Photovoltaics • Thin film solar cells (a-Si, µCSi, CdTe ...) • Multibandgap-cells Alternatives: • Organic semiconductor systems • Photoelectrochemical cells(Grätzel-Cells)

  14. Materials for Collectors • Coatings today: • Black Chromium • Black Nickel Efficient, but processing (galvanisation) not environmentally benign • Coatings Future: • Al2N3 • Carbides • TiNOx Better efficiency (absorption and reflection) but processing costs high

  15. Thermoelectrical Devices • Principle • Materials: Bi2Te3, Bi2Se3, Sb2Te (RT) / PbTe-, SiGe-Alloys (550 – 800 K) • Energy Source: In general lost heat • Applications: • Energy independent micro sensors (“self-powered sensors”) • “self-powered micro-devices” • Auxiliary power systems in automotives • Cooling of Photovoltaic devices

  16. Thermoelectrical Devices Future: Higher Efficiency using nanostructured materials

  17. CO2-Sequestration& Utilisation Carbon Capture and Storage Technologies

  18. CO2-Sequestration • Research Topics (Chemistry related) • Coal Gasification • CO2-Capture • Absorption • Membranes • Materials / Corrosion(CO2(l) / H2O / High Salt Concentration)

  19. CO2-Utilisation • Energy Storage Systems • Dry Reforming • CO2 as C1-Building Block • Artificial Photosynthesis • Microalgae–Cultivation • “Better Plants”

  20. Japan MeOH CO2 Australia CO2-Utilisation ZnCrO-catalyst • Energy Storage SystemsCO2 + H2 CH3OH + H2O • NEDO-Project, Japan (since early 90ies)

  21. CO2-UtilisationSteamless Carbon Dioxide Reforming (Dry Reforming) • CO2 + CH4  2CO + 2H2 • Idea: Exploitation of remote gas fields (stranded gas) • Discussion Platforms: • Eranet Chemistry • SusChem-D: September Workshop

  22. CO2-UtilisationArtificial Photosynthesis

  23. CO2-UtilisationArtificial Photosynthesis • Light harvesting supramolecular components (Balzani, Bologna)

  24. CO2-UtilisationArtificial Photosynthesis • General Problems • Thermal – Stability • Photo(oxidative)-Stability • Light-Harvesting • European Network: Solar-H (http://www.fotomol.uu.se/Forskning/Biomimetics/solarh)

  25. CO2-UtilisationCO2 as C1 Building Block • Problem: Inertness CO2 O O C C R2O OR1 R2 OR1 Ester Carbonates R3 R4 C R1O OR2 Acetales

  26. CO2-UtilisationCO2 as C1 Building Block Activation by Carboanhydrase: CO2 + H2O  HCO3- + H+ Aktive Center of Carboanhydrase

  27. CO2-UtilisationActivation of CO2 • Active Species: Carbamate M.Antonietti, Angew. Chemie 2007, 119, 2773 ff

  28. CO2-Utilisation Biorefineries • Bioethanol/BioDiesel (1st Generation) • Biofuels 2nd Generation • BTL ( FT-Catalysts) • Lignocellulose  Ethanol • Biogas • Chemical Building Blocks

  29. CO2-Utilisation Biogas One Alternative: Zinkoxid H2S+ZnO  H2O+ZnS 200-400 °C (!)  H2S-content: ppb

More Related