1 / 26

Tonian 1000 -850

Mesoproterozoicum 1 600-1000. Tonian 1000 -850. Ordovician 490-440. Silurian 440-410. Devonian 410-355. Carboniferous 355-290. First Glomeromycota fossils. First lichens. Lecanoromycetes. lichenized. terrestrial. Ascomycota (Saccharomyces cerevisiae). Dicaria. Basidiomycota.

aziza
Download Presentation

Tonian 1000 -850

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mesoproterozoicum 1600-1000 Tonian 1000-850 Ordovician490-440 Silurian 440-410 Devonian 410-355 Carboniferous 355-290 First Glomeromycota fossils First lichens Lecanoromycetes lichenized terrestrial Ascomycota(Saccharomyces cerevisiae) Dicaria Basidiomycota Ektomycorrhiza Glomeromycota Arbuscular mycorrhiza Zygomycota Phycomyces Multiple loss of flagellum Saprotroph / mutualists Chytridium Chytridiomycota Fungi Microsporidia Arthropod pathogen Nuclearia simplex Amphiacantha Metazoa Opistho-konta Nuclearia Choanoflagellata phagotroph Mycetozoa s.str. Unikonta terrestrial Oomycota Plant pathogen (Chromista) Bikonta Plantae Phytophora infestans

  2. Cambrian 540-490 Ordovician490-440 Silurian 440-410 Devonian 410-355 Molecular data put the divergence of Bryophytes and Tracheophytes to the end of the Proterozoic (540 to 700 mya). Seed plants Pterydophyta Tracheophytes First land plants ? Sphenopsida Psilophyton Isoetales Embryophytes Lycopodiaceae Drepanophycales Parafunaria sinensis Aglaophyton Rhynia Bryophyta Marchantiopsida Charophytes ? Lunularia cruciata Chara

  3. Devonian 410-355 Rather warm, zoned climate Rather warm, zoned climate Southern glaciation, mass extinction Kampecaris forfarensis, Myriapoda Stomata of Rhynia Pterychthyodes, Placoderna Niedźwiedzki et al. 2010) Moresnetia zalesskyi

  4. Creeping on land Polypterussenegalus(lung fish) Standon et al. 2014, Nature 513, 54 After eight months raised on land, fin development resembled those of primitive amphibians. Morphological plasticity might be a strong motor of evolution.

  5. Carboniferous 355-300 Warm and wet climateHigh oxygen concentration Ice ageMass extinction Delitzshala bitterfeldensis Equisetum Breyeria harlemensis Paleodictyoptera Lepidodendron source of today’s coal Homoptera Euproops rotundatus Xiphosura

  6. Carboniferous 355-300 Warm and wet climateHigh oxygen concentration Ice ageMass extinction Temporal fenestra Diapsidreptiles Anapsidreptiles Synapsid reptiles Homodont Homoodont Heterodont Hylonomusa first primitive Anapsid Petrolacosaurusfirst primitive Diapsid heterodont Archeothyrisfirst primitive Synapsid

  7. Carboniferous 355-290 Permian 290-250 Trias 250-205 Jurassic 205-140 Cretaceous 140-65 Sarco-pterygia Anapsida Mesosauria Euryapsida Rhyncho-cephalid(Comodo waran) Lepidosauromorpha Anapsidcranion Amnion Squamates(Snakes, lizards) Archosauromorpha Pterosauria Diapsidcranion Dinosauria Aves (birds) Crocodylia(crocodyles) Testudines(turtles) Pelycosauria Synapsid cranion Therapsida Mammalia(mammals)

  8. Permian 300-250 Ice ageMass extinction Warmer and arid Arid Mass extinction Anapsid reptiles Mesosaurus, Permian primitive anapsid aquatic reptile Milleretta, Permian primitive anapsid terrestrial reptile

  9. Permian 300-250 Ice ageMass extinction Warmer and arid Arid Mass extinction Synapsid reptiles Pelycosaur → Therapsida → Theriodontia (mammal like) Dimetrodon, Permian primitive synapsid Pelycosaur Proburnetia, Permian primitive synapsid Therapsid Annatherapsidus petri, Permian synapsid Theriodont Mammal like teeth

  10. Permian 300-250 Ice ageMass extinction Warmer and arid Arid Mass extinction Acrodont and pleurodont dentition Diapsid reptiles LepidosauromorphaSquamata, Tuatara Tuatara, Lepidosauria Ichthyosauria Thermoreg-ulating body cover Ichthyosaurus, Lepidosauria ArchosauromorphaPterosauria, Dinosauria Crocodylomorpha Thecodont dentition Endothermy? Scale derived thermoregulating body cover? Pterodactylus kochii, Archosauromorpha Terrestrisuchs, Crocodylomorpha

  11. 6. From Meso- to Cenozoic Triassic 250-205Pangaea Jurassic 205-140Laurasia and Gondwana Cretaceous 140-65Formation of present day continents Hot and dryPolar regions moist and temperate Warm and dryNo ice caps at poles Very warm no ice caps at poles. Ocean temperatures about 15-20º higher than today Pangaea

  12. Cretaceous 140-65Formation of present days continents Very warm no ice caps at poles. Ocean temperatures about 15-20º higher than today From Müller et al. 2008)

  13. Triassic 250-205Pangaea Jurassic 205-140Laurasia and Gondwana Cretaceous 140-65Formation of present days continents Herbivores Archosauromorpha Diplodocus Sauropoda Oviraptor Therapoda Mainly Carnivores Microraptor gui Saurischia Thyranosaurus rex Paraves (Down feathers) Archaeopteryx (Flight / display feathers) Dinosauria Aves(birds) Ornithischia Iguanodon Stegosaurus Stegosauria Herbivores Ceratopsia Triceratops Carnivores Nemicolopterus crypticus Pterosauria

  14. Mesozoic dinosaur diversity Recent Birds: 1200 genera Mammals: 1135 genera Total 1844 genera Data from Wang, Dodson (2006), Sullivan (2006)

  15. Jurassic 205-140Laurasia and Gondwana Cretaceous 140-65Formation of present days continents Basal Theropoda Archaeopteryx Avialae Confuciusornis 1 – 5 kg Yixianornis <1 – 20 kg Aves Troodon(large brain, stereoscopic sight, nocturnal < 1 kg <1 – 60 kg Down feathers Jinfengopteryx Mahakala < 1 kg ParavesFlight / display feathershomoiotherm,Pneumatic bones Rahonavisprobably flight < 1 – 50 kg Deinonychus Dromaeosauridae 10 – 80 kg Velociraptor

  16. Cretaceous 140-65 Paleogene 65-23 Neogene 23- Evolution of birds Tinamiformes Struthioniformes Palaeognathae Anseriformes Galliformes Adaptive radiation Neognathae Psittaciformes Apodiformes Others Strigiformes Falconiformes Passeriformes

  17. Carboni-ferous 355-290 Permian 290-250 Triassic 250-205 Jurassic 205-140 Cretaceous 140-65 Cycadophyta Gingkophyta Gingko Pinophyta Adaptive radiation Cordaitales Gnetophyta Welwitschia mirabilis Magnoliophyta Amborella trichopoda Archaefructus liaoningensis Nymphaeaceae „Dicotyls” Adaptive radiation „Monocotyls”

  18. Mesozoic 250-65 Cenozoic 65- Cretaceous 140-65 Paleogene 65-23 Neogene 23- Adaptive radiation Genetic diversification Adaptive radiation Extant mammalian lineages Cetacea Cetarthiodactyla Perissodactyla Carnivora Laurasiatheria Chiroptera Adaptive radiation Rodentia Lagomorpha Tree shrews Adaptive radiation Primates Euarchontoglires Ant eaters Xenarthra Elephant shrews Afrotheria Elephants Marsupialia Monotremata

  19. The rise of insects Devonian Carboniferous Permian Triassian Jurassic Cretaceous Tertiary to recent Palaeodictyoptera Odonata Ephemeroptera Dictyoptera Plecoptera Zoraptera Embioptera Isoptera In the Triassic period all extant taxa already existed Genetic diversification Dermaptera Grylloblatodea Phasmida Orthoptera Mallophaga Psocoptera Thysanoptera Heteroptera Hymenoptera Neuroptera Adaptive radiation Coleoptera Siphonaptera Genetic diversification Mecoptera Diptera Trichoptera Lepidoptera

  20. The rise of holometabolous insects Jurassic Cretaceous

  21. Cretaceous 140-65 Paleogene 65-23 An early bee The earliest ants An early lacewing An early weevil A weevil in amber The earliest moth A swarm of midges Photos from: http://www.fossilmuseum.net/Fossil_Galleries/Insect_Galleries_by_Order/

  22. The Cretaceous –Tertiary impact K-T boundary Walter Alvarez 1940- Luis Alvarez 1911- 1988 The Chicxulub Impact structure buried beneath the Yucatan Peninsula has 150 - 300 km in diameter Age dates of melt rock in the structure have at date of 65 Ma. The K-T boundary. The arrow indicates a layer of Iridium rich ash. Iridium is rare on the surface of the earth but much more common in Chondrite meteors

  23. Extinctions at the K-T boundary were not evenly distributed across taxa 15% of all marine families went extinct, 50 % at generic level, maybe 80-90 % of all species. Affected were mainly plankton, marine predators, and shallow water communities. 25 % of terrestrial families and 56 % at generic level went extinct. Nothing bigger than 25 kg survived (predators and herbivores). However, dinosaur and pterosaurdiversity declined even before the impact. Probably the impact wiped out the last survivors. Unaffected were higher plants (10% extinction), mammals (rise of 20%), and birds.

  24. Cretaceous and Paleogene saw • an enormous diversification of • Angiospermes (floweringplants) • Holometabolicinsects (Coleoptera, Hymenoptera, Lepidoptera, Diptera) • mammals • birds • snails • probablylizards • probablyfish • a decline in diversity of • Gymnospermes (conifers) • Brachiopoda • the extinction of • Ammonites • Belemnites • Pterosaurs • Dinosaurs Global species richness of dinosaurs Reports of survivingdinosaursarehighlycontroversial. Data from Sullivan (2006)

  25. Today’s reading The Mesozoic era: http://www.palaeos.com/Mesozoic/Mesozoic.htm http://www.palaeos.com/Mesozoic/Mesozoic2.html The Cenozoic era: http://www.palaeos.com/Cenozoic/Neogene.html http://www.palaeos.com/Cenozoic/Paleogene.html

More Related