1 / 79

Prof. Mehdi Hasan Mumtaz

Prof. Mehdi Hasan Mumtaz. ACID-BASE BALANCE. Terminology. Physiologic Compensation By Body. Pathophysiologic Disturbances. Practical Approach To Assessment. Biochemical Reports & Case Histories. DEFINITION OF TERMINOLOGY. ACID - STANDARD BICARBONATE. BASE - BUFFER BASE & BASE DEFICIT.

bbelanger
Download Presentation

Prof. Mehdi Hasan Mumtaz

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Prof. Mehdi Hasan Mumtaz

  2. ACID-BASE BALANCE • Terminology. • Physiologic Compensation By Body. • Pathophysiologic Disturbances. • Practical Approach To Assessment. • Biochemical Reports & Case Histories.

  3. DEFINITION OF TERMINOLOGY • ACID - STANDARD BICARBONATE. • BASE - BUFFER BASE & BASE DEFICIT. • ALKALI • BUFFERING & BUFFER. • PH. 24 x PCO2 (mmHg) H+(nmol/L)=- ----------------------------- HCO3 (meq/L) (40nmol/L)

  4. PRODUCT OF METABOLISM • H++ - Anaerobic Metabolism. • CO2 - Aerobic Metabolism.

  5. PHYSIOLOGIC COMPENSATION • HYDROGEN IONS. • Incoporation in water.H++HCO3H2C3O CO2 + H2O. • Loss from body. • Kidney – regeneration of HCO3. • Intestine. • CO2. • Chemoreceptors in hypothalamus. • HCO3. • HCO3 generation by erythrocytes. • HCO3 re-absorption in renal tubules. • HCO3 generation in renal tubules.

  6. BICARBONATE GENERATION BY ERYTHROCYTES HHB Hb Cl— HCO-3 CO2 Cl— -HCO3 +H+ CO2+H2O

  7. HCO3- Na+ Na+ HCO3- HCO3- HCO3- H+ CELL H2CO3 H2CO3 CD CO2 H2O CO2 + H2O BICARBONATE REABSORPTION BY KIDNEY RENAL T. LUMEN STIMULATED BY HCO3- M. ACIDOSIS

  8. BICARBONATE GENERATION IN KIDNEY B- HCO3- Na+ STIMULATED PCO2 (BY RESP ACIDOSIS) & -HCO3 (M. ACIDOSIS) Na+ B- HCO3- H+ CELL H2O HB CO3 H2O

  9. PATHOPHYSIOLOGIC DISTURBANCES Lungs Disturbances of CO2= R. Centre Disturbance of H++HCO3 = Metabolic

  10. Henderson - HosselbalchEQUATION Proton Acceptor (Base) PH=PK+Log = -------------------------------- Proton Donor (Acid) -HCO3 (Metabolic) PH=PK+Log = ---------------------------------- H2CO3 or PCO2 x 0.03 (Respiratory)

  11. ACID-BASE DISTURBANCE -HCO3 PCO2 x 0.03 MEATBOLIC RESPIRATORY ACIDOSIS ALKALOSIS ACIDOSIS ALKALOSIS HCO3 ---------------- PCO2x0.03 HCO3 ---------------- PCO2x0.03 HCO3 ---------------- PCO2x0.03 HCO3 ---------------- PCO2x0.03    RATIO 

  12. Metabolic acidosis = Respiratory acidosis = Metabolic alkalosis = Respiratory alkalosis = Defect HCO3 ---------- PCO2 HCO3 ---------- PCO2 HCO3  ---------- PCO2 HCO3 ---------- PCO2  Correction HCO3 ---------- PCO2  HCO3 ---------- PCO2  HCO3 ---------- PCO2  HCO3 ---------- PCO2 

  13. CAUSES OF M. ACIDOSIS Hyperkalamic M. Acidosis • Glomeralar failure. • Keto-acidosis. • Lactic acidosis. • Intestinal loss. • R. Tubular failure. • Actazolamide therapy. • R. Tubular acidosis. • Ureteric transplantation. • NH4Cl el therapy. Variable Hyppkalamic Acidosis Hyperchloraemic Acidosis

  14. CAUSES M. ACIDOSIS • A.HYPERKALAEMIC M. ACIDOSIS 1, GLOMERULAR FAILURE 2, KETOACIDOSIS 3, LACTIC ACIDOSIS

  15. CAUSES OF M.ACIDOSIS • B.HYPOKALAEMIC M.ACIDOSIS 1.RENAL TUBULAR 2.ACETAZOLAMIDE THERAPY 3.RENAL TUBULAR ACIDOSIS

  16. CAUSES OF M. ACIDOSIS • C.HYPERCHLORAEMIC ACIDOSIS 1.ACATAZOLAMIDE THERAPY 2.RENAL TUBULAR ACIDOSIS 3.URETERIC TRASPLANTATION 4.AMMONIUM CHLORIDE

  17. CAUSES OF M. ACIDOSIS • D.HYPERCHLORAEMIC HYPOKALAEMIC M.ACIDOSIS 1.ACETAZOLAMIDE THERAPY 2.RENAL TUBULAR ACIDOSIS

  18. SCREENING TESTS METABOLIC ACIDOSIS • BLOOD GLUCOSE. • URINE/ BLOOD KETONES. • SERUM CHLORIDE. • SERUM POTASSIUM

  19. RESPIRATORY ACIDOSIS • Acute Respiratory Failure. • Erythrocyte • Chronic Respiratory Failure. • Renal Generation.

  20. METABOLIC ALKALOSIS • Administration of HCO3. • K+ depletion – Generation by kidney. • Pyloric Stenosis.

  21. RESPIRATORY ALKALOSIS • Hysterical Over-breathing. • ICP. • Brain Stem Injury. • Hypoxia. • Pulmonary Oedema. • Lobar Pneumonia. • Pulmonary Collapse. • Excessive Artificial Ventilation.

  22. BALANCE OF ACID-BASE NORMAL VALUES • PCO2 • 30-50mmHg or 4-6.6kPa. • >50mmHg respiratoryor 6.6kPa acidosis • <30mmHg respiratoryor 4kPa alkalosis • PH • 7.30 – 7.50 • >7.50 alkalaemia. • <7.30 acidosis

  23. BALANCE OF ACID-BASE RELATIONSHIP • PCO2 and PH. • PCO2 &ventilation. • PO2 andnormal range. • PO2 and FIO2. • PCO2,and temperature.

  24. TERMINOLOGY • ACIDAEMIA - PH<7.30 • ALKAEMIA - PH>7.50. • ACIDOSIS - Base Deficit Present. • ALKALOSIS - Base Excess Present.

  25. HOW TO ASSESS BLOOD GASES? • STEP-1 Assessment of Acid-Base Balance. • STEP-2 Assessment of Hypoxaemic State. • STEP-3 Assessment of Tissue Oxygenation State.

  26. STEP-1Assessment of Acid-Base BalanceCLASSIFICATION ALKALOSIS ACIDOSIS METABOLIC RESPIRATORY METABOLIC RESPIRATORY CHRONIC ACUTE CHRONIC ACUTE CHRONIC ACUTE CHRONIC ACUTE

  27. STEP-1Assessment of Acid-Base Balance • Acute - Uncompensated. • Chronic - Compensated. -Fully. - Partially. COMPENSATED PH 7.30-7.50 DIAGNOSIS.

  28. DIAGNOSIS SEQUENCE. • PH. • PCO2. • HCO3. PH Normal 7.4 Compensated 7.3-7.5 PCO3 Normal 40mmHg (5.3kPa) Compensated 30-50mmHg (4-6.6 kPa)

  29. DIAGNOSIS • IF PH LOW – acidosis. • Look at PCO2. • If PCO3 high - respiratory acidosis • If PH low - acidosis • Look at PCO2 • If it is normal or low. • Look at HCO3. It is low – metabolic acidosis. • IF PH HIGH - alkalosis • Look at PCO2. • If it is low - respiratory alkalosis • If PH high - PCO2 normal or high. • Look at HCO3. High - metabolic alkalosis. NOW LOOK FOR COMPENSATION

  30. A C I D O S I S A L K A L O S I S Primary change Primary change

  31. PRACTICAL EXAMPLES • PH 7.26 7.38 7.20 7.36 7.60 7.56 • PCO2 56 76 40 25 25 44 • HCO3 24 24 9 15 24 38

  32. STEP-2Hypoxaemic State • Below 60 years of age: • Normal PO2 = 97mmHg.(13 Kpa) • Acceptable range = >80mHg.(10.6Kpa) • Mild hypoxiaemia = <80mmHg.(10.6Kpa) • Moderate hypoxiaemia = <60mmHg.(8) • Severe hypoxiaemia = <40mmHg.(5.3)

  33. STEP-2Hypoxaemic State • Above 60 years of age: • Subtract 1mmHg from minimal 80mmHg for every year over 60; this means acceptable range: • 60 years = >80 mmHg. =>10.6 Kpa • 70 years = >70 mmHg. => 9.3 Kpa • 80 years = >60 mmHg. = > 8.0 Kpa • 90 years = >50 mmHg. = > 6.6 Kpa • New Born: • Acceptable = 40-70 mmHg.= 5.3-9.3 Kpa

  34. STEP-2Hypoxaemic State • Oxygen Therapy FIO2 x 5 = Expected PO2. Uncorrected Hypoxaemia = PO2<Room Air Acceptable Limit. Corrected Hypoxaemia = PO2 > Room Air Acceptable Limit. <100mmHg.=13.3 Kpa Excessively Corrected Hypoxaemia = PO2>100mmHg(13.3Kpa) < minimal predicted.

  35. OXYGENATION STATUS • FIO2 ----PIO2 • PAO2 = PIO2-PACO2 • PaO2 • P(A-a)O2=PAO2-PaO2 • PaO2/PAO2=0.67 ------------------------------------------------------ • DO2 520—720ml/min/m2 • VO2 110—160 ml/min/m2 • Lactate

  36. PRACTICAL EXAMPLES • PH 7.24 7.42 7.54 7.16 7.36 7.48 • PCO2 32 28 29 83 83 33 • HCO3 14 18 24 29 48 24 • BE -13 -5 +3 -3 +15 +1 • PO2 100 50 65 30 45 75 • FIO2 21 40 21 40 21 50 • AGE 40 50 45 40 80 70

  37. PRACTICAL EXAMPLES • PH 7.24 7.46 7.40 7.48 7.48 7.55 • PCO2 28 26 56 33 33 20 • HCO3 12 18 34 24 24 18 • BE -15 -4 +7 +1 +1 -3 • PO2 90 70 55 50 160 45 • FIO2 21 21 21 50 50 21 • AGE 40 75 60 30 30 40

  38. STEP-3Assessment of Tissue Oxygenation • Cardiac Status. • Peripheral Perfusion Status. • Blood Oxygen Transport Mechanism. Depends on: • Vital Signs • Physical Examination.

  39. STEP-3Assessment of Tissue Oxygenation • BP. • Pulse Pressure. • Heart Rate • ECG. • Skin Color & Condition. • Capillary Fill. • Senosrium. • Electrolyte Balance. • Urine Out Put. • If Above 1,2 Good Only 3 Interfering. • Arterial Oxygen Tension Po2. • Blood Oxygen Content. • Hb Oxygen Affinity.

  40. SUMMARY • ASSESS ACID/BASE STATUS. • ASSESS HYPOXAEMIC STATE • ASSESS TISSUE OXYGENATION. • TRY TO FIND OUT THE CAUSE. • SEE FOR THE NEED OF HCO3.

  41. SUMMARY Acidosis Metabolic 6. If Cl- K+ Think of actazolamide therapy and R. Tubul Acidosis. 7. If Cl-N K+  Proximal Tubul Failure. OTHERWISE THINK ABOUT GIT INVOLVEMENT Look at 1. Blood urea If  and K+  G.F. 2. Blood Glucose/ ketones If  and K+  ketoacidosis. 3. PO2 If K+  Lactic acidosis 4. Serum HCO3. If only H/o Therapy 5. If  K+  think of NH4Cl therapy + G. Transplantation

  42. SUMMARY Respiratory Alkalosis Lung Functions will Help METABOLIC Look at K+ & Cl- K+  Cl-  H/o vomiting Pyloric stenosis If K+  find cause. H/o bicarb therap. RESPIRATORY - H/o H. Injury - L. Infection - IPPV

  43. PRACTICAL EXAMPLES • PH PCO2 HCO3 Na K Cl UREA G • 7.25 40 20 130 5.5 100 95 120 • 7.29 35 20 135 4.5 118 40 90 • 7.58 40 37 145 4.3 100 40 100 • 7.52 42 35 130 2.7 85 58 100 • 7.35 37 18 136 2.9 117 25 90

  44. BUFFER BASE/BASE DEFICIT “Sum of the Buffer anions; 44--55 meq/l PREDICTED RESPIRATORY PH? PCO2 -- PH RELATIONSHIP  PCO2 20mmHg =  0.1PH.  PCO2 10mmHg =  0.1PH

  45. BASE EXCESS/ DEFICITPredicted Respiratory PH • Calculate difference between measured PCO2 and 40mmHg. Move decimal 2 places to left. • If PCO2 > 40 subtract ½ difference from 7.4. • If PCO2 < 40 add the difference to 7.40. • PH 7.21 PCO2 90 • 90-40 = 50 = 0.50 = 0.50x ½ = 0.25 • 7.40-0.25 =7.15 • PH 7.47 PCO2 18 • 40-18 = 22= 0.22 • 7.40 + 0.22 =7.62 Predicted Resp PH.

  46. METABOLIC COMPONANT METABOLIC PH CHANGE = Measured PH -- Predicted Respiratory PH

  47. DETERMINATION OF METABOLIC COMPONENT Determine predicted PH Determine difference between measured and predicted PH Move two decimal point to the right Multiply by 2/3 Base excess if measured Ph > predicted PH Base deficit if measured PH<predicted PH

  48. EXAMPLE • PH 7.04 PCO2 76 Predicted PH= 76-40=36 =.36=1/2*36 = 18=.18=7.4-.18=7.22 Base Excess/deficit=7.22-7.04=0.18= 18*2/3=12 As measured PH is less than predicted,so it is Base deficit

  49. PaCO2/HCO3 Relationship • A.Respiratory acidosis. Expected HCO3=24+0.1*(Paco2-40) • Chronic Respiratory acidosis. Expected HCO3=24+0.35*(Paco2-40) • A.Respiratory alkalosis. Expected HCO3=24-0.2*(40-Paco2) • Chronic respiratory alkalosis. Expected HCO3=24-0.5*(40-Paco2)

  50. EXPECTED PaCO2 • METABOLIC ACIDOSIS Expected PaCO2=1.5*(HCO3) + 8 METABOLIC ALKALOSIS Expected PaCO2=40+0.6*(HCO3)

More Related