1 / 36

Performance Technology for Component Software

Performance Technology for Component Software. Allen D. Malony, Sameer Shende {malony,shende}@cs.uoregon.edu Department of Computer and Information Science Computational Science Institute University of Oregon. Outline. Complexity and performance technology TAU performance system

Download Presentation

Performance Technology for Component Software

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Performance Technologyfor Component Software Allen D. Malony, Sameer Shende {malony,shende}@cs.uoregon.edu Department of Computer and Information Science Computational Science Institute University of Oregon

  2. Outline • Complexity and performance technology • TAU performance system • Developing performance interfaces for CCA • Performance modeling and prediction issues • Applications • Uintah [U. Utah], VTF [Caltech], SAMRAI [LLNL] • Concluding remarks

  3. Focus on Component Technology and CCA • Emerging component technology for HPC and Grid • Component: software object embedding functionality • Component architecture (CA): how components connect • Component framework: implements a CA • Common Component Architecture (CCA) • Standard foundation for scientific component architecture • Component descriptions • Scientific Interface Description Language (SIDL) • CCA ports for component interactions • CCA framework services (CCAFEINE) • directory, registry, connection, event

  4. Problem Statement How do we create robust and ubiquitous performance technology for the analysis and tuning of component software in the presence of (evolving) complexity challenges? How do we apply performance technology effectively for the variety and diversity of performance problems that arise in the context of CCA components? 

  5. TAU Performance System Framework • Tuning and Analysis Utilities • Performance system framework for scalable parallel and distributed high-performance computing • Targets a general complex system computation model • nodes / contexts / threads • Multi-level: system / software / parallelism • Measurement and analysis abstraction • Integrated toolkit for performance instrumentation, measurement, analysis, and visualization • Portable, configurable performance profiling/tracing facility • Open software approach • University of Oregon, LANL, FZJ Germany • http://www.cs.uoregon.edu/research/paracomp/tau

  6. TAU Performance System Architecture Paraver EPILOG

  7. Extended Component Design • PKC: Performance Knowledge Component • POC: Performance Observability Component genericcomponent

  8. Performance Observation • Ability to observe execution performance is important • Empirically-derived performance knowledge • Does not require measurement integration in component • Monitor during execution to make dynamic decisions • Measurement integration is key • Performance observation integration • Component integration: core and variant • Runtime measurement and data collection • On-line and off-line performance analysis

  9. Performance Observation Component (POC) • Performance observation in aperformance-engineeredcomponent model • Functional extension of originalcomponent design ( ) • Include new componentmethods and ports ( ) for othercomponents to access measured performance data • Allow original component to access performance data • Encapsulate as tightly-couple and co-resident performance observation object • POC “provides” port allow use optmized interfaces ( )to access ``internal'' performance observations

  10. Timer Event Control Query Design of Performance Observation Component • One performance component per context • Performance component provides a Measurement Port • Measurement Port allows a user to create and access: • Timer (start/stop, set name/type/group) • Event (trigger) • Control (enable/disable groups) • Query (get functions, metrics, counters, dump to disk) Performance Component Measurement Port

  11. Measurement Port in CCAFEINE namespace performance { namespace ccaports { class Measurement: public virtual classic::gov::cca::Port { public: virtual ~ Measurement (){} /* Create a Timer */ virtual performance::Timer* createTimer(void) = 0; virtual performance::Timer* createTimer(string name) = 0; virtual performance::Timer* createTimer(string name, string type) = 0; virtual performance::Timer* createTimer(string name, string type, string group) = 0; /* Create a Query interface */ virtual performance::Query* createQuery(void) = 0; /* Create a User Defined Event interface */ virtual performance::Event* createEvent(void) = 0; virtual performance::Event* createEvent(string name) = 0; /** * Create a Control interface for selectively enabling and disabling * the instrumentation based on groups */ virtual performance::Control* createControl(void) = 0; }; }

  12. Timer Class Interface namespace performance { class Timer { public: virtual ~Timer() {} /* Start the Timer. Implement these methods in * a derived class to provide required functionality. */ virtual void start(void) = 0; /* Stop the Timer.*/ virtual void stop(void) = 0; virtual void setName(string name) = 0; virtual string getName(void) = 0; virtual void setType(string name) = 0; virtual string getType(void) = 0; /**Set the group name associated with the Timer * (e.g., All MPI calls can be grouped into an "MPI" group)*/ virtual void setGroupName(string name) = 0; virtual string getGroupName(void) = 0; virtual void setGroupId(unsigned long group ) = 0; virtual unsigned long getGroupId(void) = 0; }; }

  13. Control Class Interface namespace performance { class Control { public: ~Control () { } /* Control instrumentation. Enable group Id.*/ virtual void enableGroupId(unsigned long id) = 0; /* Control instrumentation. Disable group Id. */ virtual void disableGroupId(unsigned long id) = 0; /* Control instrumentation. Enable group name. */ virtual void enableGroupName(string name) = 0; /* Control instrumentation. Disable group name.*/ virtual void disableGroupName(string name) = 0; /* Control instrumentation. Enable all groups.*/ virtual void enableAllGroups(void) = 0; /* Control instrumentation. Disable all groups.*/ virtual void disableAllGroups(void) = 0; };}

  14. Query Class Interface namespace performance { class Query { public: virtual ~Query() {} /* Get the list of Timer names */ virtual void getTimerNames(const char **& functionList, int& numFuncs) = 0; /* Get the list of Counter names */ virtual void getCounterNames(const char **& counterList, int& numCounters) = 0; /* getTimerData. Returns lists of metrics.*/ virtual void getTimerData(const char **& inTimerList, int numTimers, double **& counterExclusive, double **& counterInclusive, int*& numCalls, int*& numChildCalls, const char **& counterNames, int& numCounters) = 0; virtual void dumpProfileData(void) = 0; virtual void dumpProfileDataIncremental(void) = 0; // timestamped dump virtual void dumpTimerNames(void) = 0; virtual void dumpTimerData(const char **& inTimerList, int numTimers) = 0; virtual void dumpTimerDataIncremental(const char **& inTimerList, int numTimers) = 0; }; }

  15. Event Class Interface namespace performance { class Event { public: /** * Destructor */ virtual ~Event() { } /** * Register the name of the event */ virtual void trigger(double data) = 0; /* e.g., size of a message, error in an iteration, memory allocated */ }; }

  16. Measurement Port Implementation • TAU component implements the MeasurementPort • Implements Timer, Control, Query and Control classes • Registers the port with the CCAFEINE framework • Components target the generic MeasurementPort interface • Runtime selection of TAU component during execution • Instrumentation code independent of underlying tool • Instrumentation code independent of measurement choice • TauMeasurement_CCA port implementation uses a specific TAU measurement library

  17. Using MeasurementPort #include "ports/Measurement_CCA.h"… double MonteCarloIntegrator::integrate (double lowBound, double upBound,int count) { classic::gov::cca::Port * port;double sum = 0.0; // Get Measurement port port = frameworkServices->getPort ("MeasurementPort"); if (port) measurement_m = dynamic_cast < performance::ccaports::Measurement * >(port); if (measurement_m == 0){ cerr << "Connected to something other than a Measurement port"; return -1; } static performance::Timer* t = measurement_m->createTimer( string("IntegrateTimer")); t->start(); for (int i = 0; i < count; i++) { double x = random_m->getRandomNumber (); sum = sum + function_m->evaluate (x); } t->stop();

  18. Using TAU Component in CCAFEINE repository get TauMeasurement repository get Driver repository get MidpointIntegrator repository get MonteCarloIntegrator repository get RandomGenerator repository get LinearFunction repository get NonlinearFunction repository get PiFunction create LinearFunction lin_func create NonlinearFunction nonlin_func create PiFunction pi_func create MonteCarloIntegrator mc_integrator create RandomGenerator rand create TauMeasurement tau connect mc_integrator RandomGeneratorPort rand RandomGeneratorPort connect mc_integrator FunctionPort nonlin_func FunctionPort connect mc_integrator MeasurementPort tau MeasurementPort create Driver driver connect driver IntegratorPort mc_integrator IntegratorPort go driver Go quit

  19. Using SIDL for Language Interoperability // // File: performance.sidl // version performance 1.0; package performance { class Timer { void start(); void stop(); void setName(in string name); string getName(); void setType(in string name); string getType(); void setGroupName(in string name); string getGroupName(); void setGroupId(in long group); long getGroupId(); } }

  20. Using SIDL Interface for Timers // SIDL: #include "performance_Timer.hh" int main(int argc, char* argv[]) { performance::Timer t = performance::Timer::_create(); ... t.setName("Integrate timer"); t.start(); // Computation for (int i = 0; i < count; i++) { double x = random_m->getRandomNumber (); sum = sum + function_m->evaluate (x); } ... t.stop(); return 0; }

  21. Performance Knowledge Component • Describe and store “known” component’s performance • Benchmark characterizations in performance database • Empirical or analytical performance models • Saved information about component performance • Use for performance-guided selection and deployment • Use for runtime adaptation • Representation must be in common forms with standard means for accessing the performance information

  22. Performance Knowledge Repository & Component • Component performance repository • Implement in componentarchitecture framework • Similar to CCA componentrepository [Alexandria] • Access by componentinfrastructure • View performance knowledge as component (PKC) • PKC ports give access to performance knowledge • to other components back to original component • Store performance model for performance prediction • Component composition performance knowledge

  23. Component Performance Model • User specified • Inferred automatically by performance tool • Prior performance data • Expression • Parametric model • Estimate performance of a single component by • Querying runtime performance data • Passing this to performance model for evaluation • Integration of performance observation and knowledge components key to runtime selection of components

  24. Composition of Components • Understanding scalability of performance models (Research problem) • Linear superposition principle does not apply! • Composition of scalable components may not produce a scalable execution (mismatch of data structures…) Scalable Component A Scalable Component B data Unscalable union

  25. Performance Technology for Components: TAU Paraver EPILOG

  26. TAU Instrumentation • Flexible instrumentation mechanisms at multiple levels • Source code • Manual (TAU API, CCA Measurement Port API) • automatic using Program Database Toolkit (PDT), OPARI (for OpenMP programs), Babel SIDL compiler (proposed) • Object code • pre-instrumented libraries (e.g., MPI using PMPI) • statically linked • dynamically linked (e.g., Virtual machine instrumentation) • fast breakpoints (compiler generated) • Executable code • dynamic instrumentation (pre-execution) using DynInstAPI

  27. Application / Library C / C++ parser Fortran 77/90 parser Program documentation PDBhtml Application component glue IL IL SILOON C / C++ IL analyzer Fortran 77/90 IL analyzer C++ / F90 interoperability CHASM Program Database Files Automatic source instrumentation TAU_instr DUCTAPE Program Database Toolkit

  28. Program Database Toolkit (PDT) • Program code analysis framework for developing source-based tools for C99, C++ and F90 [U.Oregon, LANL, FZJ Germany] • High-level interface to source code information • Widely portable: • IBM, SGI, Compaq, HP, Sun, Linux clusters,Windows, Apple, Hitachi, Cray T3E... • Integrated toolkit for source code parsing, database creation, and database query • commercial grade front end parsers (EDG for C99/C++, Mutek for F90) • Intel/KAI C++ headers for std. C++ library distributed with PDT • portable IL analyzer, database format, and access API • open software approach for tool development • Target and integrate multiple source languages • Used in CCA for automated generation of SIDL [CHASM] • Use in TAU to build automated performance instrumentation tools (tau_instrumentor) • Can be used to generate code for performance ports in CCA

  29. New Features in TAU • Instrumentation • OPARI – OpenMP directive rewriting approach [POMP, FZJ] • Selective instrumentation –grouping, include/exclude lists • tau_reduce – rule based detection of high overhead lightweight routines • Measurement • PAPI [UTK] – Support for multiple hardware counters/time • Callpath profiling (1-level) • Native generation of EPILOG traces [EXPERT, FZJ] • Analysis • Support for Paraver [CEPBA] trace visualizer • jracy – New Java based profile browser in TAU • Availability • New platforms and compilers supported (NEC, Hitachi, Intel)

  30. Applications: Uintah (U. Utah) Scalability analysis

  31. Applications: VTF (ASCI ASAP Caltech) • C++, C, F90, Python • PDT, MPI

  32. Applications: SAMRAI (LLNL) • C++ • PDT, MPI • SAMRAI timers (groups)

  33. TAU Status • Instrumentation supported: • Source, preprocessor, compiler, MPI, runtime, virtual machine • Languages supported: • C++, C, F90, Java, Python • HPF, ZPL, HPC++, pC++... • Packages supported: • PAPI [UTK], PCL [FZJ] (hardware performance counter access), • Opari, PDT [UO,LANL,FZJ], DyninstAPI [U.Maryland] (instrumentation), • EXPERT, EPILOG[FZJ],Vampir[Pallas], Paraver [CEPBA] (visualization) • Platforms supported: • IBM SP, SGI Origin, Sun, HP Superdome, HP/Compaq Tru64 ES, • Linux clusters (IA-32, IA-64, PowerPC, Alpha), Apple, Windows, • Hitachi SR8000, NEC SX, Cray T3E ... • Compilers suites supported: • GNU, Intel KAI (KCC, KAP/Pro), Intel, SGI, IBM, Compaq,HP, Fujitsu, Hitachi, Sun, Apple, Microsoft, NEC, Cray, PGI, Absoft, … • Thread libraries supported: • Pthreads, SGI sproc, OpenMP, Windows, Java, SMARTS

  34. Concluding Remarks • Complex component systems pose challenging performance analysis problems that require robust methodologies and tools • New performance problems will arise • Instrumentation and measurement • Data analysis and presentation • Diagnosis and tuning • Performance engineered components • Performance knowledge, observation, query and control • Integration of performance technology

  35. Support Acknowledgement • TAU and PDT support: • Department of Energy (DOE) • DOE 2000 ACTS contract • DOE MICS contract • DOE ASCI Level 3 (LANL, LLNL) • U. of Utah DOE ASCI Level 1 subcontract • DARPA • NSF National Young Investigator (NYI) award

More Related