1 / 9

Модел фемура за статичку анализу методом коначних елемената

Модел фемура за статичку анализу методом коначних елемената. Др Снежана Вуловић, мр Никола Коруновић. Материјалне карактеристике кости и имплантата. C.J. Brown, C.J. Wang, A.L. Yettram, P. Procter, Intramedullary nails with two lag screws , Clinical Biomechanics 19 (2004) 519–525

beyla
Download Presentation

Модел фемура за статичку анализу методом коначних елемената

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Модел фемура за статичку анализу методом коначних елемената Др Снежана Вуловић, мр Никола Коруновић

  2. Материјалне карактеристике кости и имплантата

  3. C.J. Brown, C.J. Wang, A.L. Yettram, P. Procter, Intramedullary nails with two lag screws, Clinical Biomechanics 19 (2004) 519–525 • Implant material: Stainless steel: Young’s modulus 210 GPa; Poisson’s ratio 0.3 • Femur: Cortical bone: Young’s modulus 17GPa Cancellous bone: Young’s modulus 1.3 GPa Intertrochanteric region: modulus 0.32 GPa

  4. K. Sitthiseripratip, H. Van Oosterwyck, J. Vander Sloten, B. Mahaisavariya,E.L.J. Bohez, J. Suwanprateeb, R. Van Audekercke, P. Oris, Finite element study of trochanteric gamma nail for trochantericfracture, Medical Engineering & Physics 25 (2003) 99–106

  5. B. Serala, J.M. Garcia, J. Cegonino, M. Doblare, F. Seral, Finite element study of intramedullaryosteosynthesis in the treatment of trochantericfractures of the hip: Gamma and PFN, Injury, Int. J. Care Injured (2004) 35, 130-135 The mechanical properties of the implants: modulus of elasticity 2.00E5 N/mm2 Poisson’s ratio of 0.28.

  6. Ching-Lung Tai, Chun-Hsiung Shih, Weng-Pin Chen, Shiuann-Sheng Lee,Yu-Liang Liu, Pang-Hsin Hsieh, Wen-Jer Chen, Finite element analysis of the cervico-trochanteric stemlessfemoral prosthesis, Clinical Biomechanics 18 (2003) S53–S58 modulus of elasticity Poisson’s ratios Cortical bone (composite glass fiber/epoxy resin) 14.2 GPa 0.3 Cancellous bone (polyurethane foam) 50MPa 0.3 C-T (titanium) 110 GPa 0.3 PCA (Co–Cr alloy) prosthesis 220 GPa 0.3

  7. J. Schmitt, J. Meiforth, M. Lengsfeld, Development of a hybrid finite element model for individualsimulation of intertrochanteric osteotomies, Medical Engineering & Physics 23 (2001) 529–539

  8. J. Cubillo, C. J. Wang, Numerical Analysis of a Femur Resurfacing Cup, ISB XXth Congress - ASB 29th Annual Meeting, July 31 - August 5, Cleveland, Ohio modulus of elasticity Poisson’s ratios Cortical bone 17000 MPa 0.3 Cancellous bone 1300 MPa 0.3 femur trochanteric 320 MPa 0.3 Cobalt Chromium 210000 MPa 0.3 Cement 2200 MPa i 2800 MPa

  9. K. Stoffel, U. Dieter, G. Stachowiak, A. Gächter, and M. S. Kuster, Biomechanical testing of the LCP –how can stability in locked internal fixators be controlled?, Injury, Int. J. Care Injured 34 (2003) S-B11–S-B19 • Implant material - pure titanium: Young’s modulus 115 GPa Poisson’s ratio 0.34 Stainless steel: E= 220 GPa; Poisson’s ratio 0.34 • Tibia: Cortical bone: Young’s modulus 17 GPa; Poisson’s ratio 0.3 Cancellous bone: Young’s modulus 700 MPa; Poisson’s ratio 0.2

More Related