1 / 24

Teoria przewodnictwa

Teoria przewodnictwa.

binh
Download Presentation

Teoria przewodnictwa

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teoria przewodnictwa • Przewodnictwo elektryczne - to zjawisko skierowanego przenoszenia ładunków elektrycznych przez dodatnie lub ujemne nośniki prądu (np. elektrony, jony) w ośrodku pod wpływem przyłożonego zewnętrznego pola elektrycznego. Zależnie od natury fizycznej ładunków wytwarzających prąd elektryczny wyróżniamy następujące rodzaje przewodnictwa elektrycznego: • -elektronowe, • -dziurowe, • -jonowe, • -mieszane. • Ponadto wyróżniamy przewodnictwo elektryczne: • -samoistne, • -niesamoistne.

  2. Przewodnictwo elektronowe (przewodnictwo typu n) - to przenoszenie ładunku elektrycznego przez ciało pod działaniem zewnętrznego pola elektrycznego. W modelu pasmowym krystalicznych ciał stałych zjawisko polegające na tym, że elektrony zajmujące stany kwantowe w obrębie pasma przewodnictwa przesuwają się do sąsiednich nie obsadzonych stanów kwantowych w obrębie tego pasma, w kierunku przeciwnym do kierunku wektora pola elektrycznego. Przewodnictwo dziurowe (przewodnictwo typu p) - to przenoszenie ładunku elektrycznego przez kryształ pod działaniem zewnętrznego pola elektrycznego, polegające na tym, że elektrony pozostające w niecałkowicie zapełnionym paśmie podstawowym przesuwają się do niezajętych poziomów kwantowych (dziur elektronowych) w obrębie tego pasma w kierunku przeciwnym do wektora pola elektrycznego, co formalnie odpowiada przesuwaniu się ładunków dodatnich zgodnie z kierunkiem wektora pola elektrycznego.

  3. Przewodnik Poziom Fermiego - maksymalny poziom energetyczny atomu, znajdującego się w temperaturze zera bezwzględnego. Istnienie tego poziomu jest konsekwencją zakazu Pauliego a ten konsekwencją tego, iż elektrony są fermionami (podlegają statystyce Fermiego - Diraca). • Elektronika posługuje się zwykle uproszczonym modelem energetycznym, w którym opisuje się energię elektronów walencyjnych dwoma pasmami dozwolonymi: • pasmo walencyjne (pasmo podstawowe) - zakres energii jaką posiadają elektrony walencyjne związane z jądrem atomu; • pasmo przewodnictwa - zakres energii jaką posiadają elektrony walencyjne uwolnione z atomu, będące wówczas nośnikami swobodnymi w ciele stałym. Dolna granica pasma przewodnictwa jest położona wyżej (wyższa energia) niż górna granica pasma walencyjnego (niższa energia). Przerwa energetyczna pomiędzy tymi pasmami jest nazywana pasmem zabronionym (wzbronionym) lub przerwą zabronioną

  4. Izolator Poziom Fermiego w izolatorch znajduje się w okolicy granicy pasma walencyjnego, a pasmo wzbronione jest szerokie. Powoduje to, że elektrony nie mogą łatwo zwiększać swojej energii (ponieważ najpierw muszą przeskoczyć do pasma przewodnictwa).

  5. Półprzewodnik Półprzewodniki - najczęściej substancje krystaliczne, których konduktywność (miara podatności na przepływ prądu) jest rzędu 10-8 do 105 S/m, co plasuje je między przewodnikami a izolatorami. Wartość rezystancji półprzewodnika maleje ze wzrostem temperatury. Półprzewodniki posiadają pasmo wzbronione między pasmem walencyjnym a pasmem przewodzenia w zakresie 0 - 5 eV (np. Ge 0,7 eV, Si 1,1 eV , GaAs 1,4 eV, GaN ok 2,5 eV). W przemyśle elektronicznym najczęściej stosowanymi materiałami półprzewodnikowymi są pierwiastki grupy IV (np. krzem, german) oraz związki pierwiastków grup III i V (np. arsenek galu, azotek galu, antymonek indu) lub II i VI (telurek kadmu). Materiały półprzewodnikowe są wytwarzane w postaci monokryształu, polikryształu lub proszku.

  6. Półprzewodniki spontaniczne W półprzewodniku poziom Fermiego położony jest podobnie jak w przypadku izolatorów, jednak przerwa energetyczna (szerokość pasma wzbronionego) jest niewielka (umownie za półprzewodnik przyjmuje się ciało, w którym szerokość pasma wzbronionego jest mniejsza niż 2 eV W półprzewodnikach spontanicznych część elektronów przechodzi do pasma przewodnicta dzięki energii termicznej, lub np. wzbudzeń fotonowych. Przewodnictwo w półprzewodnikach spontanicznych ma charakter pół na pół elektronowo-dziurowy. Proces pojawiania się elektronów w paśmie przewodnictwa i wolnych miejsc (dziur) w paśmie podstawowym pod wpływem wzrostu temperatury nosi nazwę generacji termicznej par dziur-elektron.Liczba generowanych par, czyli ich koncentracja, jest tym większa, im jest węższe pasmo zabronione danego półprzewodnika oraz im temperatura monokryształu jest wyższa. Po pewnym czasie pobudzony elektron powraca do stanu podstawowego z wyemitowaniem kwantu promieniowania. Taki proces nazywamy rekombinacją .

  7. Półprzewodniki typu n Jeżeli do półprzewodnika (będącego pierwiastkiem grupy 4A) wprowadzimy pierwiastek z grupy 5A nadmiarowe elektrony w strukturze krystalicznej utworzą nowy poziom - poziom donorowy, który znajduje się tuż poniżej pasma przewodnictwa. Elektrony z poziomu donorowego niewielkim kosztem energetycznym mogą przenosić się do pasma przewodnictwa. W półprzewodnikach typu n główny wkład do przewodnictwa pochodzi od elektronów (ale efekty opisane dla spontanicznych też grają role). PÓŁPRZEWODNIK TYPU N uzyskuje się przez dodanie - w procesie wzrostu kryształu krzemu - domieszki pierwiastka pięciowartościowego (np. antymon, fosfor). Niektóre atomy krzemu zostaną zastąpione w sieci krystalicznej atomami domieszki, zwanymi donorami

  8. Półprzewodniki typu p Analogicznie do półprzewodników typu n, jeżeli wprowadzimy pierwiastek grupy 3A to tuż powyżej pasma walencyjnego pojawia się wolny poziom, zwany akceptorowym. Spontaniczne przejście elektronów na ten poziom powoduje powstawanie dziur, które są nośnikiem dominującym. PÓŁPRZEWODNIK TYPU P uzyskuje się przez zastąpienie niektórych atomów krzemu atomami pierwiastków trójwartościowych (np. glinu, galu). Atom tej domieszki ma trzy elektrony walencyjne, związane z sąsiednimi atomami krzemu. Do wypełnienia czwartego wiązania sąsiadującego krzemu, brakuje w sieci krystalicznej jednego elektronu i zostaje on uzupełniony przez pobranie elektronu z jednego z sąsiednich wiązań, w którym powstaje dziura. Atom pierwiastka trójwartościowego, zwanego akceptorem, po uzupełnieniu elektronu w "nieprawidłowym" wiązaniu (na skutek niedostatku ładunków dodatnich w jądrze) staje się jonem ujemnym, wywołując lokalną polaryzację kryształu.

  9. Złączem p-n nazywane jest złącze dwóch półprzewodników niesamoistnych o różnych typach przewodnictwa: P i N. W obszarze typu N występują nośniki większościowe ujemne (elektrony) oraz unieruchomione w siatce krystalicznej atomy domieszek (donory). Analogicznie w obszarze typu P nośnikami większościowymi są dziury o ładunku elektrycznym dodatnim oraz atomy domieszek (akceptory). W półprzewodnikach obu typów występują także nośniki mniejszościowe przeciwnego znaku niż większościowe; koncentracja nośników mniejszościowych jest dużo mniejsza niż większościowych.

  10. W stanie równowagi termodynamicznej tj. gdy z zewnątrz nie przyłożono żadnego pola elektrycznego, w pobliżu styku obszarów P i N swobodne nośniki większościowe przemieszczają się (dyfundują), co spowodowane jest różnicą koncentracji nośników. Gdy elektrony przemieszczą się do obszaru typu P, natomiast dziury do obszaru typu N (stając się wówczas nośnikami mniejszościowymi) dochodzi do rekombinacji z nośnikami większościowymi, które nie przeszły na drugą stronę złącza. Rekombinacja polega na "połączeniu" elektronu z dziurą, a więc powoduje "unieruchomienie" tych dwu swobodnych nośników. Zatem rekombinacja powoduje redukcję nośników po obu stronach złącza, czego skutkiem jest pojawienie się nieruchomych jonów: ujemnych akceptorów i dodatnich donorów; jony te wytwarzają pole elektryczne, które zapobiega dalszej dyfuzji nośników. W efekcie w pobliżu złącza powstaje warstwa ładunku przestrzennego, nazywana też warstwą zubożaną (tj. praktycznie nieposiadającą swobodnych nośników) lub warstwą zaporową. Nieruchomy ładunek dodatni po stronie N hamuje przepływ dziur z obszaru P, natomiast ładunek ujemny po stronie P hamuje przepływ elektronów z obszaru N. Innymi słowy przepływ nośników większościowych praktycznie ustaje.

  11. Przepływ nośników większościowych nazywany jest prądem dyfuzyjnym. W złączu mogą przepływać również nośniki mniejszościowe - jest to prąd unoszenia i jego zwrot jest przeciwny do zwrotu prądu dyfuzyjnego. Ze względu na niską koncentrację nośników mniejszościowych wartość prądu unoszenia jest niewielka, rzędu mikroamperów (10 − 6), a nawet pikoamperów (10 − 12). Pole elektryczne ładunku przestrzennego jest reprezentowane przez barierę potencjału. W złączu niespolaryzowanym jest to napięcie dyfuzyjne, którego wartość zależy głównie od koncentracji domieszek i temperatury. W przypadku złącz wykonanych z krzemu napięcie to w temperaturze pokojowej ma wartość rzędu 0,6-0.8 V, natomiast dla złącz germanowych wynosi ok. 0,2-0,3 V. Napięcie dyfuzyjne zmniejsza się wraz ze wzrostem temperatury o ok. 2,3 mV na kelwin. • Jeśli do złącza zostanie przyłożone napięcie zewnętrzne, wówczas równowaga zostanie zaburzona. W zależności od biegunowości napięcia zewnętrznego rozróżnia się dwa rodzaje polaryzacji złącza: • w kierunku przewodzenia, wówczas dodatni biegun napięcia jest dołączony do obszaru P; • w kierunku zaporowym, wówczas dodatni biegun napięcia jest dołączany do obszaru N. • Bez względu na polaryzację dla większości złącz można przyjąć, że całe napięcie zewnętrzne odkłada się na obszarze zubożonym.

  12. Polaryzacja w kierunku przewodzenia W tym przypadku bariera potencjału zmniejsza się o wartość zewnętrznego napięcia U, zmniejsza się również szerokość obszaru zubożonego. Gdy U przekroczy wartość napięcia dyfuzyjnego, wówczas obszar zubożony znika i praktycznie bez przeszkód następuje dyfuzja nośników mniejszościowych z obszaru N do P i z P do N. Te dodatkowe nośniki (nazywane wstrzykniętymi nośnikami mniejszościowymi) rekombinują z nośnikami większościowymi w danym obszarze. Ale ze źródła zasilania dopływają wciąż nowe nośniki większościowe, zatem dyfuzja nie zatrzymuje się jak w przypadku niespolaryzowanego złącza, lecz ma miejsce cały czas. W efekcie w obwodzie płynie prąd dyfuzyjny. Polaryzacja w kierunku zaporowym W tym przypadku bariera potencjału zwiększa się, gdyż do napięcia dyfuzyjnego dodaje się napięcie zewnętrzne, zwiększa się również szerokość obszaru zubożonego. Przy takiej polaryzacji płynie tylko niewielki prąd unoszenia, zwany tutaj prądem wstecznym. Wartość prądu wstecznego praktycznie nie zależy od wartości przyłożonego napięcia, zależy natomiast od temperatury i własności materiału, ponieważ to te parametry mają wpływ na ilość nośników mniejszościowych.

  13. Dioda Dioda prostownicza to rodzaj diody przeznaczonej głównie do prostowania prądu przemiennego o małej częstotliwości, której głównym zastosowaniem jest dostarczenie odpowiednio dużej mocy prądu stałego. Dioda prostownicza

  14. Prostownik jest to element lub zestaw elementów elektronicznych służący do zamiany napięcia przemiennego na napięcie jednokierunkowe, które po dalszym odfiltrowaniu może być zmienione na napięcie stałe.

  15. Jednopołówkowe (półokresowe) Najprostszym prostownikiem jest pojedyncza dioda prostownicza wpięta w układ napięcia przemiennego. Pomimo prostoty takiego układu jest on bardzo rzadko stosowany z uwagi na występowanie dużego tętnienia napięcia wyjściowego. Dodatkowo, energia dostarczana przez źródło wykorzystywana jest tylko przez pół okresu - podczas drugiej połowy okresu napięcie jest po prostu blokowane i prąd w układzie nie płynie. Wprowadza to niesymetrię obciążenia układu prądu przemiennego, co jest niekorzystne dla sieci prądu przemiennego. Z powyższych powodów rozwiązanie stosowane tylko w układach niewielkiej mocy. Rozwiązanie to jest powszechnie stosowane w zasilaczach impulsowych małych mocy.

  16. Dwupołówkowe (całookresowe) Prostowniki dwupołówkowe umożliwiają wykorzystanie mocy źródła napięcia przemiennego przez cały okres. Napięcie wyjściowe takiego prostownika charakteryzuje się mniejszymi tętnieniami niż w przypadku prostowników jednopołówkowych. Jedyną wadą jest to, że układ elektryczny jest nieznacznie bardziej skomplikowany. Układ mostkowy, tzw. mostek Graetza, wykorzystuje cztery diody prostownicze, i pozwala na prostowanie napięcia z dowolnego źródła przemiennego. Istnieje również konstrukcja oparta na dwóch diodach, jednak wymaga ona specjalnego zasilania - uzwojenie wtórne transformatora musi być podzielone na dwie jednakowe części. Obecnie układy takie stosuje się niezwykle rzadko, ponieważ koszt dzielonego uzwojenia jest znacznie większy niż koszt diod użytych w układzie mostkowym.

  17. Prostowniki trójfazowe Prostowniki trójfazowe wykorzystuje się tam, gdzie dostępne jest trójfazowe zasilanie. Generalnie charakteryzują się one znacznie mniejszym tętnieniem napięcia wyjściowego niż prostowniki jednofazowe. Jednopołówkowe Trójfazowy prostownik jednopołówkowy może działać tylko w układzie trójfazowym z przewodem neutralnym. Oznacza to, że układ źródeł napięcia (lub uzwojeń wtórnych transformatora) musi być połączony w gwiazdę (połączenie w trójkąt nie posiada przewodu zerowego).

  18. Dwupołówkowe Trójfazowy prostownik dwupołówkowy może być stosowany w dowolnym układzie napięcia trójfazowego - zarówno z przewodem neutralnym jak i bez niego. Napięcie wyjściowe wykazuje bardzo małe tętnienie (w porównaniu do prostowników opisanych powyżej). Energia źródeł zasilania jest wykorzystywana w największym zakresie, co jest szczególnie istotne w przypadku urządzeń dużej mocy, jak np. spawarki transformatorowe. Często prostowniki w tego typu urządzeniach posiadają możliwość sterowania wartością prądu wyjściowego

  19. Dioda Zenera (stabilistor) - odmiana diody półprzewodnikowej, której głównym parametrem jest napięcie przebicia złącza PN. W kierunku przewodzenia (anoda spolaryzowana dodatnio względem katody) zachowuje się jak normalna dioda, natomiast przy polaryzacji zaporowej (katoda spolaryzowana dodatnio względem anody) może przewodzić prąd po przekroczeniu określonego napięcia na złączu, zwanego napięciem przebicia. Przy niewielkich napięciach (do ok 6V (Woltów)) podstawową rolę odgrywa zjawisko Zenera, powyżej - przebicie lawinowe. Napięcie przebicia jest praktycznie niezależne od płynącego prądu i zmienia się bardzo nieznacznie nawet przy dużych zmianach prądu przebicia (dioda posiada w tym stanie niewielką oporność dynamiczną).

  20. Dioda elektroluminescencyjna, dioda świecąca, LED (ang. Light Emitting Diode) - dioda zaliczana do półprzewodnikowych przyrządów optoelektronicznych, emitujących promieniowanie w zakresie światła widzialnego, jak i podczerwieni. Pojawiła się w latach sześćdziesiątych; wynaleziona przez amerykańskiego inżyniera - Nicka Holonyaka juniora. Jej działanie opiera się na zjawisku rekombinacji nośników ładunku (rekombinacja promienista). Zjawisko to zachodzi w półprzewodnikach wówczas, gdy elektrony przechodząc z wyższego poziomu energetycznego na niższy zachowują swój pseudo-pęd. Jest to tzw. przejście proste. Podczas tego przejścia energia elektronu zostaje zamieniona na kwant promieniowania elektromagnetycznego. Przejścia tego rodzaju dominują w półprzewodnikach z prostym układem pasowym, w którym minimum pasma przewodnictwa i wierzchołkowi pasma walencyjnego odpowiada ta sama wartość pędu. Luminescencja jest zjawiskiem fizycznym polegającym na emitowaniu przez materię promieniowania elektromagnetycznego pod wpływem czynnika pobudzającego, które dla pewnych długości fali przewyższa emitowane przez tę materię promieniowanie temperaturowe. W diodzie LED mamy do czynienia z tzw. elektroluminescencją, przy wytworzeniu której źródłem energii pobudzającej jest prąd elektryczny dostarczony zewnątrz, czasami pole elektryczne. Najefektywniejsza elektroluminescencja w półprzewodniku powstaje w wyniku rekombinacji swobodnych nośników ładunku w złączu p-n, gdy jest one spolaryzowane w kierunku przewodzenia. Intensywność świecenia zależy od wartości doprowadzonego prądu, przy czym zależność ta jest liniowa w dużym zakresie zmian prądu. Zjawiska przeszkadzające elektroluminescencji to: pochłanianie wewnętrzne i całkowite wewnętrznego odbicia

  21. Dioda laserowa (ang. laser diode) to laser półprzewodnikowy, w którym medium emitującym światło jest złącze p-n analogiczne do źródła światła w diodzie LED. W odróżnieniu od zwykłej diody elektroluminescencyjnej, dioda laserowa jest zbudowana tak, by stworzyć wokół złącza rezonator optyczny, co przy odpowiednio wysokim napięciu i prądzie zasilania sprzyja emisji wymuszonej, i powstaniu spójnej, monochromatycznej wiązki światła. Ze względu na niewielkie rozmiary, niskie koszty produkcji, oraz wysoką wydajność, diody laserowe są dzisiaj najczęściej wykorzystywanym rodzajem laserów, i znajdują zastosowanie między innymi w napędach CD, napędach Blu-ray, napędach HD DVD, wskaźnikach laserowych, łączności światłowodowej.

  22. Fotodioda, półprzewodnikowy element bierny, oparty o złącze P-N, z warstwą zaporową. Brak polaryzacji w momencie oświetlania półprzewodnika, w złączu powstaje siła elektromotoryczna (fotoprąd lub zjawisko fotowoltaiczne). • Zastosowania: • przy braku polaryzacji - bateria słoneczna • przy polaryzacji zaporowej - nieliniowy rezystor, w którym opór zależy od strumienia światła. • W obu przypadkach można wykorzystać fotodiodę jako detektor.

More Related