1 / 24

Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

OV/1-2. Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario. H. Takenaga 1) and the JT-60 Team. 1) Japan Atomic Energy Agency. 21st IAEA Fusion Energy Conference 16 - 21 October
 2006 Chengdu, China. 1997. JT-60U.

bjorn
Download Presentation

Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. OV/1-2 Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario H. Takenaga1) and the JT-60 Team 1) Japan Atomic Energy Agency 21st IAEA Fusion Energy Conference 16 - 21 October
2006 Chengdu, China 1997

  2. JT-60U Enhanced national and international collaborations. The JT-60 Team N.Aiba1), H.Akasaka, N.Akino, T.Ando3), K.Anno, T.Arai, N.Asakura, N.Ashikawa4), H.Azechi5), M.Azumi,L.Bruskin6), S.Chiba, T.Cho7), B.J.Ding8), N.Ebisawa, T.Fujii, K.Fujimoto1), T.Fujita, T.Fukuda5), M.Fukumoto5), A.Fukuyama9), H.Funaba4), H.Furukawa2), M.Furukawa10), P.Gohil11), Y.Gotoh2), L.Grisham12), S.Haga2), K.Hamamatsu, T.Hamano2), K.Hanada13), M.Hanada, K.Hasegawa, H.Hashizume14), T.Hatae, A.Hatayama15), T.Hayashi2), N.Hayashi, T.Hayashi, H.Higaki7), S.Higashijima, U.Higashizono7), T.Hino16), T.Hiraishi17), S.Hiranai, Y.Hirano18), H.Hiratsuka, Y.Hirohata16), J.Hobirk19), M.Honda9), A.Honda, M.Honda, H.Horiike5), K.Hoshino, N.Hosogane, H.Hosoyama2), H.Ichige, M.Ichimura7), K.Ida4), S.Ide, T.Idehara20), H.Idei13), Y.Idomura, K.Igarashi2), S.Iio21), Y.Ikeda, T.Imai7), S.Inagaki4), A.Inoue2), D.Inoue7), M.Isaka, A.Isayama, S.Ishida, K.Ishii2), Y.Ishii, M.Ishikawa14), Y.Ishimoto1), K.Itami, T.Itoga14), Sanae Itoh13), Satoshi Itoh13), K.Iwasaki2), Y.Kagei1), S.Kajiyama22), S.Kakinoto7), M.Kamada1), Y.Kamada, A.Kaminaga, K.Kamiya, S.Kasai, K.Kashiwa, K.Katayama13), T.Kato4), M.Kawai, Y.Kawamata, Y.Kawano, T.Kawasaki13), H.Kawashima, M.Kazawa, K.Kikuchi2), H.Kikuchi2), M.Kikuchi, A.Kimura9), H.Kimura23), H.Kimura, Y.Kishimoto9), S.Kitamura, K.Kiyono, K.Kizu, N.Kobatake22), M.Kobayashi2), S.Kobayashi9), Y.Kobayashi9), T.Kobuchi4), K.Kodama, Y.Kogi13), Y.Koide, A.Kojima1), S.Kokubo17), S.Kokusen2), M.Komata, A.Komori4), T.Kondoh, S.Konishi9), S.Konoshima, S.Konovaliv24),A.Koyama9), M.Koyanagitsu23), T.Kubo5), H.Kubo, Y.Kudoh, R.Kurihara, K.Kurihara, G.Kurita, M.Kuriyama, Y.Kusama, N.Kusanagi2), J.Li24), J.Lonnroth25), T.Luce11), T.Maekawa9), K.Masaki, A.Mase13), M.Matsukawa, T.Matsumoto, M.Matsuoka26), Y.Matsuzawa2), H.Matumura2), T.Matunaga1), K.Meguro2), K.Mima5), O.Mitarai27), Y.Y.Miura5), Y.Miura, N.Miya, A.Miyamoto2), S.Miyamoto5), N.Miyato, H.Miyauchi23), Y.Miyo, K.Mogaki, Y.Morimoto23), S.Moriyama, M.Nagami, Y.Nagasaka22), K.Nagasaki9), Y.Nagase13), S.Nagaya, Y.Nagayama4), H.Naito28), O.Naito, T.Nakahata23), N.Nakajima4), Y.Nakamura4), K.Nakamura13), T.Nakano, Y.Nakashima7), M.Nakatsuka5), M.Nakazato2), Y.Narushima4), R.Nazikian12), H.Ninomiya, M.Nishikawa13), K.Nishimura4), N.Nishino29), T.Nishitani, T.Nishiyama, N.Noda4), K.Noto2), H.Nuga10), K.Oasa, T.Obuchi4), I.Ogawa20), Y.Ogawa10), H.Ogawa, T.Ohga3), N.Ohno17), K.Ohshima2), T.Oikawa, A.Oikawa, M.Okabayashi12),N.Okamoto17), K.Okano30), F.Okano, J.Okano, K.Okuno23), Y.Omori, A.Onoshi23), Y.Ono10), H.Oohara, T.Oshima, Y.Oya10), N.Oyama, T.Ozeki, V.Parail25), H.Parchamy4), B.J.Peterson4), G.D.Porter31),A.Sagara4), G.Saibene32), T.Saito7), M.Sakamoto13), Y.Sakamoto, A.Sakasai, S.Sakata, T.Sakuma2), S.Sakurai, T.Sasajima, M.Sasao14), F.Sato2), M.Sato, K.Sawada33), M.Sawahata, M.Seimiya, M.Seki, J.P.Sharpe34), T.Shibahara17), K.Shibata2), T.Shibata, T.Shiina, R.Shimada21), K.Shimada, A.Shimizu13), K.Shimizu, M.Shimizu, K.Shimomura21), M.Shimono, K.Shinohara, S.Shinozaki, S.Shiraiwa10), M.Shitomi, S.Sudo4), M.Sueoka, A.Sugawara2), T.Sugie, K.Sugiyama17), A.M.Sukegawa, H.Sunaoshi, Masaei Suzuki2), Mitsuhiro Suzuki2), Yutaka Suzuki2), S.Suzuki, Yoshio Suzuki, T.Suzuki, M.Takahashi2), R.Takahashi2), K.Takahashi2), S.Takamura17), S.Takano2), Y.Takase10), M.Takechi, N.Takei, T.Takeishi13), H.Takenaga, T.Takenouchi2), T.Takizuka, H.Tamai, N.Tamura4), T.Tanabe13), Y.Tanai2), S.Tanaka9), J.Tanaka9), S.Tanaka10), T.Tani, K.Tani, H.Terakado2), M.Terakado, T.Terakado, K.Toi4), S.Tokuda, T.Totsuka, Y.Toudo4), N.Tsubota2), K.Tsuchiya, Y.Tsukahara, K.Tsutsumi2), K.Tsuzuki, T.Tuda, T.Uda4), Y.Ueda5), T.Uehara2), K.Uehara, Y.Ueno9), Y.Uesugi35), N.Umeda, H.Urano, K.Urata2), M.Ushigome10), K.Usui, K.Wada2), M.Wade11), K.Watanabe4), T.Watari4), M.Yagi13), Y.Yagi18), H.Yagisawa2), J.Yagyu, H.Yamada4), Y.Yamamoto9), T.Yamamoto, Y.Yamashita2), H.Yamazaki2), K.Yamazaki4), K.Yatsu7), K.Yokokura, I.Yonekawa3), M.Yoshida1), H.Yoshida5), N.Yoshida13), M.Yoshida13), H.Yoshida16), H.Yoshida, A.Yoshikawa23), M.Yoshinuma4), H.Zushi13) Japan Atomic Energy Agency, 1)Post-Doctoral Fellow, 2)Staff on loan, 3)Nippon Advanced Technology Co.Ltd., Japan National collaborations : as the central tokamak in Japanese fusion research. 4)National Institute for Fusion Science, Japan, 5)Osaka University, Japan, 6)Japan Society of the Promotion of Science Invitation Fellowship, 7)University of Tsukuba, Japan, 9)Kyoto University, Japan, 10)The University of Tokyo, Japan, 13)Kyushu University, Japan, 14)Tohoku University, Japan, 15)Keio University, Japan, 16)Hokkaido University, Japan, 17)Nagoya University, Japan, 18)National Institute of Advanced Industrial Science and Technology, Japan, 20)Fukui University, Japan, 21)Tokyo Institute of Technology, Japan, 22)Hiroshima Insitute of Technology, Japan, 23)Shizuoka University, Japan, 26)Mie University, Japan, 27)Kyushu Tokai University, Japan, 28)Yamaguchi University, Japan, 29)Hiroshima University, Japan, 30)Central Research Institute of Electric Power Industry, Japan, 33)Shinshu University, Japan, 35)Kanazawa University, Japan International collaborations : including IEA/ITPA collaboration. 8)Southwestern Institute of Physics, China, 11)General Atomics, USA, 12)Princeton Plasma Physics Laboratory, USA, 19)Max-Planck-Institut fur Plasmaphysik, Germany, 24)JAERI Fellow, 25)Euratom/UKAEA Association, UK, 31)Lawrence Livermore National Laboratory, USA, 32)EFDA Closed Support Unit, Germany, 34)Idaho National Engineering and Environmental Laboratory, USA

  3. JT-60U Strong p(r) and q(r) linkage among physics with various time scales Plasma Wall Interaction Bootstrap current Current diffusion ITB Heating Rotation control Current drive Fuelling Transport strong Pressure weak Safety factor MHD stability ETB 0 1 0 1 Main topics r/a r/a '03-'04 '05-'06 JT-60U objectives and strategy • ITER Physics R&D • Advanced Tokamak (AT) Concepts for ITER & DEMO • AT plasmas : high N & high bootstrap current fraction (fBS) • high p mode plasma • reversed shear (RS) plasma • Sustainment of high N below no wall ideal limit and high fBS longer than the current diffusion time. • High N exceeding no wall ideal limit. • Integrated performance in the long high N discharges. • Development of real time control systems towards intelligent control for the high fBS plasmas.

  4. JT-60U Schematic view of research area in N-fBS space High N exceeding no wall limit • Wall stabilization effect • Suppression of resistive wall mode (RWM) by plasma rotation Ideal wall limit DEMO JT-60SA RWM No wall limit ITER-SS Integrated performance • Confinement improvement • Robustness for current profile diffusion • Effect of plasma wall interaction N NTM ITER-Hybrid ITER-Inductive Real-time control systems • Pressure profile control • Real-time current profile control fBS p(r) & q(r) linkage Ferritic Steel Tiles (FSTs) are installed inside the vacuum vessel to reduce toroidal field ripple. • Decrease in fast ion loss with the large volume configuration close to the wall, where wall stabilization effectively works.

  5. JT-60U Contents Installation of ferritic steel tiles and its effects in L- and H-mode plasmas Extension of operation regime to high N exceeding no wall ideal limit and RWM study Integration of plasma performance in the long high N discharges Development of real time control with high bootstrap current fraction Physics studies on issues implicated for ITER Summary

  6. JT-60U 100.0 80.0 60.0 40.0 20.0 0.0 1. Installation of ferritic steel tiles and its effects in L- and H-mode plasmas. • FSTs cover ~10% of the surface. • Large effect is obtained at BT < ~2 T. • 3-D Monte-Carlo simulations (F3D OFMC) for fast ion behavior indicated that total NB absorbed power is increased by 30% (by 50% for perpendicular NB)in the large volume configuration. Ip = 1.1 MA, BT = 1.86 T, VP = 79 m3 quasi-ripple well region w/o FSTs w FSTs FSTs w FSTs Absorbed power (%) w/o FSTs total perp. co ctr co P-NB N-NB The present K. Shinohara (FT/P5-32, Thu.)

  7. JT-60U (km/s) T V 0 0.2 0.4 0.6 0.8 1 Spin-up of toroidal rotation in co-direction due to reduction of fast ion loss. • Heat flux in the ripple trapped loss region measured with IRTV is consistent with that calculatedby F3D OFMC. • Toroidal rotation shifts to co-direction due to the reduction of the fast ion loss. w FSTs Ip = 1.2 MA, BT = 2.6 T, q95 = 4.1, Vp = 75 m3, L-mode < 0.2 MW/m2 150 w FSTs w FSTs 100 Ripple trapped loss w/o FSTs  50 w/o FSTs 0 1u perp. & 2u co-NB • F3D OFMC calculation • < 0.3 MW/m2 w FSTs • > 1 MW/m2 w/o FSTs -50 r/a K. Shinohara (FT/P5-32, Thu.) M. Yoshida (EX/P3-22, Wed.)

  8. JT-60U 1.1 1 0.9 0.8 0.7 Pedestal parameters and confinement are enhanced with co-rotation in H-mode. • Ip = 1.2 MA, BT = 2.6 T, q95 = 4.1, Vp = 75 m3 • Pedestal pressure increases with the increase in toroidal rotation at the pedestal in co-direction. • Energy confinement is improved by enhancing core toroidal rotation in co-direction. • Pedestal pressure and confinement are raised with FSTs even at a given toroidal rotation. 7 w FSTs co-NB w FSTs co-NB 6 bal- bal- ctr- 5 ctr- P ped (kPa) HH98(y,2) 4 co-NB co- bal- bal- ctr- ctr- 3 w/o FSTs w/o FSTs 2 -300 -200 -100 0 100 200 -100 -50 0 50 VT(r/a=0.2) (km/s) VTped (km/s) H. Urano (EX/5-1, Thu.)

  9. 2. Extension of operation regime to High N exceeding no wall ideal limit and RWM study • Suppression of RWM by plasma rotation is a key. • Estimation of critical rotation velocity for suppressing RWM is important. Ideal wall limit DEMO JT-60SA RWM No wall limit ITER-SS N NTM ITER-Hybrid ITER-Inductive fBS p(r) & q(r) linkage

  10. JT-60U 5 4 3 2 B (a.u.) B (a.u.) ~ ~ 1 0 0.8 0.9 1 1.1 1.2 1.3 1.4 N reaches ideal wall limit. • High p ELMy H-mode plasma : BT=1.58 T, Ip=0.9 MA, 0~20 cm (d/a=1.2) • Increase in net heating powerdue to the FSTs installation allows to access high N up to 4.2 with li=0.8-1. • n=1 mode at high beta region. • Growth time of 1/~1 ms (< w~10 ms) before collapse. • RWM is suppressed by plasma rotation (100km/s at r/a=0.3). E045480 li~0.9 N=5xli ideal wall limit Vp>70 m3 N=4xli N N=3xli no wall limit N w FSTs after 20th IAEA 1/~1ms w/o FSTs before 20th IAEA li M. Takechi (EX/7-1Rb, Fri.)

  11. JT-60U B (G) ~ 0 -50 -100 G. Matsunaga (EPS 2006) Small critical rotation velocity of VC/VA~0.3% is found at q95=3.5 for suppressing RWM. • Less counter rotationdue to the FSTs installation enables to change the rotation in co-direction close to zero. • VC~15 km/s • Growth time of 1/~10 ms (~ W) • No increase in VC for higher C. • Large impact on ITER & DEMO. no wall ideal limit N VT (km/s) at q=2 ideal wall limit E046710 E046743 (bNideal_wall - bNno_wall) switch from ctr- to co-NB  (bN- bNno_wall) PNBctr (MW) ctr no wall limit PNBco (MW) co Cb = PNBperp (MW) M. Takechi (EX/7-1Rb, Fri.)

  12. 3. Integration of plasma performance in the long high N discharges. • Confinement improvement is a key. • Robustness for current profile diffusion should be demonstrated. • Change of wall pumping with a long time scale is important issue. Ideal wall limit DEMO JT-60SA RWM No wall limit ITER-SS N NTM ITER-Hybrid ITER-Inductive fBS p(r) & q(r) linkage

  13. JT-60U 50 5 40 4 ITER-SS(I) ITER-hybrid (A C C Sips, et al., PPCF 47 (2005) A19.) w FSTs (45436@18s) w/o FSTs (44092@15s) 30 3 20 2 1 10 0 0 N HH98(y,2) 2.56 60 1.3 fBS 40 0.5 20 ne/nGW 3 0.83 0 ITER Hybrid after 20th IAEA w FSTs fCD 2.5 -20 1 Prad/Pheat 2 N HH98(y,2) -40 ITER Baseline 0.56 . 1.5 -60 0.77 0 0.2 0.4 0.6 0.8 1 before 20th IAEA, w/o FSTs Fuel purity 1 0 5 10 15 20 25 30 35 Sustained duration (s) High NHH98(y,2)=2.2 is sustained for 23.1 s (~12R) with fBS=36-45% at q95~3.3. • High p ELMy H-mode plasmas : Ip = 0.9 MA, BT = 1.6 T, Vp = 67 m3 • Increase in net heating powerdue to the FSTs installationallows flexible combination of NB units.  peaked heating profile and co-injection. • Density increase degrades confinement in the latter phase. 15 1 10 Ip (MA) w FSTs 0.5 PNBI (MW) 5 Pth (kPa) 0 0 w/o FSTs q 3 N, HH98(y,2) 2 N 1 0 HH98(y,2) 4 3 ne (1019 m-3) 2 ID (a.u.) w FSTs 2 1 0 0 VT (km/s) 0 5 10 15 20 25 30 35 Time (s) w/o FSTs r/a R=0<>a2/12 : D.R. Mikkelsen, Phys. Fluids B 1 (1989) 333. N. Oyama (EX/1-3, Mon.)

  14. JT-60U E045334 Ip = 1.2 MA, BT = 2.2 T, q95 = 3.6 20 4 =0.24 ne (1019 m-3) PNB (MW) 2 10 0 0 1.5 NBI Div  (1022 s-1) Gas 0 1 Wall-pumping rate  (1022 s-1) 0 -0.5 8 2.5 Wdia (MJ) ID (1021 s-1) 4 0 0 800 • The outgas could be attributed to increase in divertor plate temperature. • HH98(y,2) ~ 0.71 at 0.64nGW. • High confinement at high density is remaining issue. 600 T (°C) 400 Divertor-plate temperature 200 0 5 10 15 20 25 30 Time (s) Density is successfully controlled by divertor pumping in enhanced recycling region. 1022 Fuelling of PNB~10 MW Divertor pumping (/s) 1021 =0.3 wall pumping 1020 1018 1019 1020 IDdiv (a.u.) • Divertor pumping depends on recycling. H. Kubo (EX/P4-11, Thu.)

  15. 4. Development of real time control with high bootstrap current fraction • Understanding of p(r) and q(r) linkage. • Current profile control is important for AT plasmas. Ideal wall limit DEMO JT-60SA Fast-CXRS ECE On & off-axis NB RWM No wall limit ITER-SS MSE LH p(r) q(r) N NTM ITER-Hybrid V(r) detector actuator ITER-Inductive Fast-CXRS co- & ctr-NB fBS p(r) & q(r) linkage

  16. JT-60U 12 6.8 s 10 8.3 s 1 0.8 8 0.5 0.6 q 0.4 0 0.2 6 -0.5 0 8 15 1.5 4 5 6 10 1 4 2 5 0.5 4 0 0.2 0.4 0.6 0.8 1 3 r/a 0 0 2 10 10 8 8 0 6 6 MSE 4 4 2 2 0 0 3 1 E045903 ne (1019 m-3) 2 5 1 0.4 0.6 0.8 0 0 4 6 8 10 12 14 co- & ctr-NB 6.8 s 7.6 s High fBS of 70% is sustained for 8 s by p(r) control at qmin= 4 with real time qmin estimation. • j(r) approaches SS, while, ne(r) still evolves for > p*(~2s) and plasma collapses. • p(r) control is important even with nearly SS j(r) and qmin being not integer. • RS plasma : q95~8.5, HH98(y,2)~1.8,N~1.4. • Ctr-NB off for p(r) control at qmin=4 for 1.0s. Ip (MA) Vloop (V) Wdia control by NB N PNB (MW) ctr-NB Ti (keV) qmin=4 qmin 150 Te (keV) Ti (keV) 100 VT (km/s) 50 0 ID (a.u.) -50 r/a Y. Sakamoto (EX/P1-10, Tue.) Time (s)

  17. JT-60U Real time qmin control demonstrated with MSE diagnostics and LHCD at fBS=0.46. • Reduction of fast ion loss due to the FSTs installation increases compatibility of LHCD with high power heating. • qmin control is affected by dynamic behavior related to the strong linkage of p(r) and q(r). Real time qmin control scheme PNB (MW) N LH MSE DPLH r/a~0.2 0.4 Te (keV) qmin,ref qMSE qmin 0.6 jOH or jBS change • Transport reduction at t=12.4 s • Time delay in response of qmin PLH (MW) MSE LH command qmin ref. T. Suzuki (EX/6-4, Thu.) Time (s)

  18. JT-60U Control for bootstrap sustained plasma (fBS~100%) is challenging. • Bootstrap sustained plasma can reduce center solenoid (CS) coil capability, which has a large impact on the economic aspect. • Nearly constant current (~0.54 MA) is maintained by BS current with constant ICS and negative NBCD current for ~1 second. • Both Wdia and Ip gradually decrease in the strong linkage even with constant Wdia control. E046687 0.6 5 Vloop (V) Ip (MA) BT = 4 T, N=1.15 ICS constant Wdia constant FB 0 -5 Wdia (MJ) N 25 1.5 N PNB (MW) Wdia 0 0 4 4.5 ne (1019 m-3) p 0 0 20 -2 IVT ICS (kA) IVT, IVR (kA) IVR 0 -4 6 1 Sn (1014 s-1) ID (a.u.) 0 0 3 4 5 6 Y. Takase (EX/1-4, Mon.) Time (s)

  19. JT-60U 5. Physics studies on issues implicated for ITER. • NTM suppression by ECCD JEC/JBS Dependence of EC deposition position Modeling • Behavior of energetic ions with Alfvén eigenmodes • Neutron emission profile measurements • Comparison with classical calculation • ELM propagation in SOL plasma • Measurements with multi reciprocating probes (LFS and HFS)

  20. JT-60U • 2/1 NTM is destabilized with the misalignment comparable to the island width. • TOPICS simulation well reproduces the experimental results with the same set of coefficients of the modified Rutherford equation. 3 (A) EC=0.62 2 0.5Wisland<<Wisland B (a.u.) B (a.u.) B (a.u.) 1 (A) E C ~ ~ ~ 0 3 EC=0.60 (B) (C) 2 ~0.5Wisland (B) 1 E C 0 3 (C) 2 >Wisland 1 EC=0.44 E C 0 9 1 0 1 1 1 2 1 3 A. Isayama (EX/4-1Ra, Thu.) t i m e [ s ] 2/1 NTM is suppressed at JEC=0.5JBS with well aligned ECCD to q=2 surface. =|EC-island-center|

  21. JT-60U Energetic ions are transported from core region due to AEs with moderate amplitude. • Understanding of the alpha particle transport in the presence of AEs is one of the urgent research issues for ITER. • The measured neutron yield is significantly smaller than the classical calculation during AEs with moderate amplitude in the central region. Neutron measurements (A) with AEs (t=6.4s) (B) with weak AEs (t=7.8s) M. Ishikawa (EX/6-2, Thu.)

  22. JT-60U mid mid r r =0.8cm =1.0cm D D B (a.u.) B (a.u.) 3 2 1 0 Non-diffusive ELM propagation is observed in LFS SOL, but not in HFS SOL. • Transient heat and particle load to the plasma facing components (PFC) is a crucial issue. • Vperpmid(peak)=0.4-1.2 km/s (rmid<5 cm), 1.5-3 km/s (rmid>6 cm) LFS HFS ELM crash 0.5 LFS 0 -0.5 LFS 6 mid (peak)=25s perp jsLFS (105 Am-2) 4 2 0 0.5 HFS 0 -0.5 jsHFS (105 Am-2) ~LCHFS/Cs ~convection time scale 0.2 0.3 0.4 N. Asakura (EX/9-2, Fri.) 0 0.1 time (ms)

  23. JT-60U 6. Summary • The installation of FSTs enables to access new regimes. • High N exceeding no wall ideal limit • N~4.2 (=ideal wall limit) • Small critical rotation of VC/VA=0.3% and no increase of critical rotation velocity in high C regime for suppressing RWM •  High N in ITER and DEMO • Long sustainment of integrated performance • NHH98(y,2)=2.2 for 23.1 s (~12R) with fBS=36-45% •  ITER hybrid scenario • Development of real time control methods for pressure profile control and current profile control.  intelligent control for the high fBS plasmas in DEMO • Progress in physics studies implicated for ITER. • NTM suppression, Energetic ions with AEs and ELM. • JT-60SA (super advanced) design is optimized to support and supplement ITER toward DEMO. (M. Kikuchi, FT2-5, Fri.)

  24. JT-60U Presentations from JT-60U Mon. Long high N discharges Bootstrap sustained discharges Tue. ITB study in high p mode plasmas High bootstrap discharges Wed. FSTs effects on rotation & momentum transport Thu. NTM suppression by ECCD FSTs effects on pedestal and confinement Energetic ions with AEs Current profile control & off-axis current drive Particle control under wall saturation Hydrogen retention and carbon deposition Radiation processes of impurities and hydrogen ITB study in RS plasmas Installation of FSTs Fri. High N and RWM study ELM propagation and fluctuation in SOL Spontaneously excited waves near ICRF Sat. High density limit with high li NTM suppression by ECCD High N and RWM study N. Oyama (EX/1-3) Y. Takase (EX/1-4) S. Ide (EX/P1-5) Y. Sakamoto (EX/P1-10) M. Yoshida (EX/P3-22) A. Isayama (EX/4-1Ra) H. Urano (EX/5-1) M. Ishikawa (EX/6-2) T. Suzuki (EX/6-4) H. Kubo (EX/P4-11) K. Masaki (EX/P4-14) T. Nakano (EX/P4-19) K. Ida (EX/P4-39) K. Shinohara (FT/P5-32) M. Takechi (EX/7-1Rb) N. Asakura (EX/9-2) M. Ichimura (EX/P6-7) H. Yamada (EX/P8-8) A. Isayama (EX/4-1Ra, P) M. Takechi (EX/7-1Rb, P)

More Related