1 / 19

Segmentation via Maximum Entropy Model

Segmentation via Maximum Entropy Model. Goals. Is it possible to learn the segmentation problem automatically? Using a model which is frequently used in NLP tasks - the Maximum Entropy model Finding features compatible to the segmentation task. Segmentation as a tagging problem.

bond
Download Presentation

Segmentation via Maximum Entropy Model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Segmentation via Maximum Entropy Model

  2. Goals • Is it possible to learn the segmentation problem automatically? • Using a model which is frequently used in NLP tasks - the Maximum Entropy model • Finding features compatible to the segmentation task

  3. Segmentation as a tagging problem • Attach each pixel one of two tags: is it an edge between segments or not. • Use a tagged set of images to build a statistical model. • Given a new image we want to find the most probable tag for each pixel using this model

  4. Maximum Entropy • We want to build a statistical model which makes as few assumptions as possible. • Entropy – the uncertainty of a distribution. The level of “surprise”. • So, we need a statistical model with the highestentropy possible.

  5. Maximum Entropy - Definitions • Event – a couple (p, t) where p is a pixel and t is its tag. • Feature – elementary piece of evidence that link p to t. A feature has a real value. • The decision about a pixel is based only on the features active at that point. • Looking for conditional probability P(p|t,f)

  6. Maximum Entropy – building the model • We use a tagged training set to build the statistical distribution. • Constrains on the distribution: • The expectation for each feature should be equal to its expectation in the training set. • Maximizing the Entropy over all possible distributions. • We get an optimization problem which can be solved using Lagrange multipliers (weights).

  7. opennlp maxent • Machine learning package compatible for NLP tasks. • Used for training maximum entropy models. • All is left is adjusting it to work with images and finding a set of features compatible for the segmentation task.

  8. The Berkeley segmentation database • Consists of 300 images and the corresponding segmentation maps. • The segmentation maps where constructed by humans. • The database is divided into a train set (200) and a test set (100).

  9. The Berkeley segmentation database - example

  10. Features • I focused on brightness and texture features (technical problems): • Brightness difference with surrounding pixels • Gradient magnitude using the Prewitt operators. • Canny edge detection results

  11. 1 2 3 100101103 405080 506090 4 5 1 1 1 1 1 1 0 0 8 7 6 Features – cont. Local Binary Partition Measure: For each pixel p, create an 8-bit number b1 b2 b3 b4 b5 b6 b7 b8 where bi=0 if neighbor i has value less than or equal to p’s value and 1 otherwise. For example:

  12. Features – cont. Laws Texture Measure: • Basic texture matrices: L5 = [ 1 4 6 4 1 ] E5 = [ -1 -2 0 2 1 ] S5 = [ -1 0 2 0 -1 ] R5 = [ 1 -4 6 -4 1 ] • Creating a 9 feature vector for each pixel: L5*E5/E5*L5L5*R5/R5*L5E5*S5/S5*E5 S5*R5/R5*S5L5*S5/S5*L5E5*R5/R5*E5 R5R5 S5S5 E5E5 • For the current pixel calculating the distance to surrounding pixels

  13. Results

  14. Results

  15. Results

  16. Results

  17. Discussion • The model is basic but it has managed to find segments at some level. • Best result are found where there is an object with a contrasting background or radical difference of texture. • The model had succeeded in filtering edges which are not segments. For example:

  18. Discussion

  19. Feature Work • More features • A compatible package for images • Search algorithm for finding the best sequence • Working with color images • Special learning: by one person, by category etc.

More Related