1 / 72

Chapter 12 다중 접속 (Multiple Access)

Learn about multiple access protocols used in the data link layer and how they control access to shared media. Topics include random access, collision detection and avoidance.

cflorence
Download Presentation

Chapter 12 다중 접속 (Multiple Access)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 12 다중 접속 (Multiple Access)

  2. 12 장 다중접속(Multiple Access) 12.1 임의접속 12.2 제어접속 12.3 채널화 12.4 요약

  3. 두 개의 계층으로 나뉘어진 데이터 링크층 • 위 층 : 데이터 링크 제어 • 아래층 : 공유하는 매체에 대한 접근 제어 책임

  4. 다중 접속 프로토콜 • 다중접속(Multiple Access) • 노드나 지국이 멀티포인트나 공통 링크를 사용할 때 링크에 대한 접속을 조절할 수 있는 다중접속 프로토콜이 필요

  5. 12.1 RANDOM ACCESS In random access or contention methods, no station is superior to another station and none is assigned the control over another. No station permits, or does not permit, another station to send. At each instance, a station that has data to send uses a procedure defined by the protocol to make a decision on whether or not to send. Topics discussed in this section: ALOHACarrier Sense Multiple Access Carrier Sense Multiple Access with Collision Detection Carrier Sense Multiple Access with Collision Avoidance

  6. 12.1 임의접속(Random Access) • 임의접속 • 각 지국은 다른 어느 지국에 의해 제어받지 않은 매체 접근 권리를 가지고 있음 • 충돌을 피하기 위한 절차 • 언제 지국이 매체에 접속할 수 있는가? • 만약 매체가 사용된다면 지국은 무엇을 할 수 있는가? • 어떤 방법으로 지국은 전송의 실패와 성공을 파악할 수 있는가? • 만약 매체 충돌이 발생한다면 지국은 무엇을 할 수 있는가?

  7. 임의접속(Random Access)(계속) • 임의접속 방법의 진화

  8. 임의접속(Random Access)(계속) • 다중접속(MA) • 최초의 다중접속 방법 ALOHA • 9,600bps를 가진 무선 LAN에 사용되도록 설계

  9. 임의접속(Random Access)(계속) • ALOHA 규칙 • 다중접속 : 송신할 프레임을 가진 모든 지국은 프레임을 송신 • 확인응답 : 프레임 전송 후 확인응답을 기다리고 시간 내에 확인응답을 받지 못하면 프레임을 잃어버렸다고 간주하고 재전송을 시도

  10. Figure 12.3 순수 ALOHA 네트워크에서 프레임

  11. Figure 12.4 순수 ALOHA Protocol의 절차

  12. Example 12.1 The stations on a wireless ALOHA network are a maximum of 600 km apart. If we assume that signals propagate at 3 × 108 m/s, we find Tp = (600 × 105 ) / (3 × 108 ) = 2 ms. Now we can find the value of TB for different values of K . a. For K = 1, the range is {0, 1}. The station needs to| generate a random number with a value of 0 or 1. This means that TB is either 0 ms (0 × 2) or 2 ms (1 × 2), based on the outcome of the random variable.

  13. Example 12.1(continued) b. For K = 2, the range is {0, 1, 2, 3}. This means that TBcan be 0, 2, 4, or 6 ms, based on the outcome of the random variable. c. For K = 3, the range is {0, 1, 2, 3, 4, 5, 6, 7}. This means that TB can be 0, 2, 4, . . . , 14 ms, based on the outcome of the random variable. d. We need to mention that if K > 10, it is normally set to 10.

  14. Figure 12.5 Vulnerable time for pure ALOHA protocol

  15. Example 12.2 A pure ALOHA network transmits 200-bit frames on a shared channel of 200 kbps. What is the requirement to make this frame collision-free? Solution Average frame transmission time Tfr is 200 bits/200 kbps or 1 ms. The vulnerable time is 2 × 1 ms = 2 ms. This means no station should send later than 1 ms before this station starts transmission and no station should start sending during the one 1-ms period that this station is sending.

  16. Note The throughput for pure ALOHA is S = G × e −2G . The maximum throughput Smax = 0.184 when G= (1/2).

  17. Example 12.3 A pure ALOHA network transmits 200-bit frames on a shared channel of 200 kbps. What is the throughput if the system (all stations together) produces a. 1000 frames per second b. 500 frames per second c. 250 frames per second. Solution The frame transmission time is 200/200 kbps or 1 ms. a. If the system creates 1000 frames per second, this is 1 frame per millisecond. The load is 1. In this case S = G× e−2 G or S = 0.135 (13.5 percent). This means that the throughput is 1000 × 0.135 = 135 frames. Only 135 frames out of 1000 will probably survive.

  18. Example 12.3(continued) b. If the system creates 500 frames per second, this is (1/2) frame per millisecond. The load is (1/2). In this case S = G × e −2G or S = 0.184 (18.4 percent). This means that the throughput is 500 × 0.184 = 92 and that only 92 frames out of 500 will probably survive. Note that this is the maximum throughput case, percentagewise. c. If the system creates 250 frames per second, this is (1/4) frame per millisecond. The load is (1/4). In this case S = G × e −2G or S = 0.152 (15.2 percent). This means that the throughput is 250 × 0.152 = 38. Only 38 frames out of 250 will probably survive.

  19. Figure 12.6 Frames in a slotted ALOHA network

  20. Note The throughput for slotted ALOHA is S = G × e−G. The maximum throughput Smax = 0.368 when G = 1.

  21. Figure 12.7 Vulnerable time for slotted ALOHA protocol

  22. Example 12.4 A slotted ALOHA network transmits 200-bit frames on a shared channel of 200 kbps. What is the throughput if the system (all stations together) produces a. 1000 frames per second b. 500 frames per second c. 250 frames per second. Solution The frame transmission time is 200/200 kbps or 1 ms. a. If the system creates 1000 frames per second, this is 1 frame per millisecond. The load is 1. In this case S = G× e−G or S = 0.368 (36.8 percent). This means that the throughput is 1000 × 0.0368 = 368 frames. Only 386 frames out of 1000 will probably survive.

  23. Example 12.4(continued) b. If the system creates 500 frames per second, this is (1/2) frame per millisecond. The load is (1/2). In this case S = G × e−G or S = 0.303 (30.3 percent). This means that the throughput is 500 × 0.0303 = 151. Only 151 frames out of 500 will probably survive. c. If the system creates 250 frames per second, this is (1/4) frame per millisecond. The load is (1/4). In this case S = G × e −G or S = 0.195 (19.5 percent). This means that the throughput is 250 × 0.195 = 49. Only 49 frames out of 250 will probably survive.

  24. 임의접속(Random Access)(계속) • 반송파 감지 다중접속(CSMA; Carrier Sense Multiple Access) • 충돌 가능성을 줄이기 위해 개발 • 각 지국은 전송 전 매체의 상태를 점검 • 충돌 가능성을 줄일수는 있지만 제거는 할 수 없음 • 전파지연 때문에 출동 가능성은 존재

  25. Figure 12.8 CSMA에서 충돌의 시간/공간적인 방법

  26. Figure 12.9 CSMA에서 취약 시간

  27. 임의접속(Random Access)(계속) • CSMA에서의 충돌

  28. 임의접속(Random Access)(계속) • 지속성 전략(persistence strategy) • 매체가 사용될 때 지국의 진행 절차를 정의 • 비지속성 • 지속성

  29. 임의접속(Random Access)(계속) • 비지속성 전략(nonpersistent strategy) • 회선을 감지해서 사용중이 아니면 즉시 전송 • 사용 중이면 임의의 시간 동안 대기하다 다시 회선을 감지 • 지속성 전략(persistent strategy) • 회선을 감지해서 사용중이 아니면 즉시 전송 • 1-지속성 : 회선이 사용중이 아니면 1의 확률로 프레임을 전송 • P-지속성 : 회선이 사용중이 아니면 p의 확률로 전송하거나1-p의 확률로 전송하지 않음 • P가 0.2일때 회선이 사용중이 아니면 0.2(시간의 20%)확률로 전송하고 0.8(시간의 80%)의 확률로 전송을 중단

  30. Figure 12.10 Behavior of three persistence methods

  31. Figure 12.11 Flow diagram for three persistence methods

  32. 임의접속(Random Access)(계속) • 충돌 검출 반송파 감지 다중 접송(CSMA/CD; Carrier sense multiple access with collision detection) • 충돌을 처리하는 절차를 더함 • 충돌 발생시 재전송을 요구 • 두번 째 충돌을 줄이기 위해 대기 • 지속적인 백오프 방법에서 대기 시간 • 0과 2N×최대전송시간 사이만큼 대기(N: 전송 시도 회수)

  33. Figure 12.12 Collision of the first bit in CSMA/CD

  34. Figure 12.13 Collision and abortion in CSMA/CD

  35. Example 12.5 A network using CSMA/CD has a bandwidth of 10 Mbps. If the maximum propagation time (including the delays in the devices and ignoring the time needed to send a jamming signal, as we see later) is 25.6 μs, what is the minimum size of the frame? Solution The frame transmission time is Tfr = 2 × Tp = 51.2 μs. This means, in the worst case, a station needs to transmit for a period of 51.2 μs to detect the collision. The minimum size of the frame is 10 Mbps × 51.2 μs = 512 bits or 64 bytes. This is actually the minimum size of the frame for Standard Ethernet.

  36. Figure 12.14 Flow diagram for the CSMA/CD

  37. Figure 12.15 Energy level during transmission, idleness, or collision

  38. Figure 12.16 Timing in CSMA/CA

  39. Note In CSMA/CA, the IFS can also be used to define the priority of a station or a frame.

  40. Note In CSMA/CA, if the station finds the channel busy, it does not restart the timer of the contention window; it stops the timer and restarts it when the channel becomes idle.

  41. Figure 12.17 Flow diagram for CSMA/CA

  42. 12.2 CONTROLLED ACCESS In controlled access, the stations consult one another to find which station has the right to send. A station cannot send unless it has been authorized by other stations. We discuss three popular controlled-access methods. Topics discussed in this section: ReservationPollingToken Passing

  43. 12.2 제어 접속(Controlled Access) • 제어접속(Controlled Access) • 어느 지국이 송신 권한을 가지고 있는지 서로 협력 • 예약(Reservation) • 폴링(Polling) • 토큰전달(Token passing)

  44. Figure 12.18 Reservation access method • 예약(Reservation) • 지국은 데이터를 송신하기 전에 예약을 필요로 함 • N개의 지국이 존재하면 N개의 예약된 미니 슬롯(mini slot)들이 예약 프레임 안에 존재 • 예약을 한 지국은 데이터 프레임을 예약 프레임 뒤에 전송

  45. 제어접속(Controlled Access)(계속) • 폴링(Polling) • 주국과 종국으로 구성되어져 있는 토폴로지에서 동작 • 폴링(polling) • 주국이 데이터 수신을 원할 때 종국 장치에게 문의 • 선택(selection) • 주국이 데이터 송신을 원할 때 종국장치에게 알려줌 • 선택(selection) • 주국이 언제든지 송신할 것이 있을 사용 • 예정된 전송을 위해 주국은 종국의 준비 상태에 대한 확인 응답을 대기 • 주국은 전송 예정된 장치의 주소를 한 필드에 포함하고 선택 프레임(SEL)을 만들어 전송 • 폴 • 주국이 종국으로부터 전송을 요청하는데 사용

  46. Figure 12.19 Select and poll functions in polling access method

  47. 제어접속(Controlled Access)(계속) • 토큰 전달(Token passing) • 토큰을 가진 지국이 데이터 송신할 권한을 가짐 • 토큰 전달 네트워크

  48. Figure 12.20 Logical ring and physical topology in token-passing access method

  49. 제어접속(Controlled Access)(계속) • 토큰 전달 절차

  50. 12.3 채널화(CHANNELIZATION) Channelization is a multiple-access method in which the available bandwidth of a link is shared in time, frequency, or through code, between different stations. In this section, we discuss three channelization protocols. Topics discussed in this section: Frequency-Division Multiple Access (FDMA)Time-Division Multiple Access (TDMA) Code-Division Multiple Access (CDMA)

More Related