1 / 47

VISION

VISION. Dr. Janet Fitzakerley jfitzake@d.umn.edu http://www.d.umn.edu/~jfitzake/Lectures/Teaching.html. Critical Facts.

chione
Download Presentation

VISION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. VISION Dr. Janet Fitzakerleyjfitzake@d.umn.eduhttp://www.d.umn.edu/~jfitzake/Lectures/Teaching.html

  2. Critical Facts • There are two fundamental protective mechanisms for the eye. Regulation of eyelid position (including BLINKING) involves striated (ACh; nicotinic) and smooth (NE; α1 adrenergic) muscles. TEAR PRODUCTION occurs spontaneously (basal), reflexly or in response to emotional stimuli, and is partially regulated by the parasympathetic nervous system (ACh; muscarinic). EPIPHORA (overflow of tears) can be due to either overproduction or blocked drainage. • The cornea and lens focus light on the retina; the cornea has greater refractive power but the focusing power of the lens can be adjusted to allow near vision (accomodation). Refractive errors include cataracts, hyperopia, myopia, presbyopia and astigmatism. • Light intensity is regulated by the PUPILLARY LIGHT REFLEX, which causes MIOSIS as a result of parasympathetic stimulation of the sphincter pupillae muscles (muscarinic receptors). MYDRIASIS results from sympathetic stimulation (α1 receptors) that activates the dilator pupillae muscles. • Increased intraocular pressure causes loss of vision (potentially permanent). Open angle glaucoma (the most common form) results from overproduction of the aqueous humor. Closed angle glaucoma (typically the most rapidly evolving form) is caused by blockage of fluid outflow. • RODS are responsible for SCOTOPIC vision (the monochromatic vision that occurs in low light). The three types of cones (blue, green and red; or Short, Medium and Long wavelength) have better temporal and spatial resolution than rods, making PHOTOPIC VISION better for discrimination of surfaces and movement under bright light conditions. • The ability to discriminate fine details of the visual scene is termed VISUAL ACUITY. Three types are recognized: SPATIAL, TEMPORAL and SPECTRAL. Visual acuity is primarily a function of the cone system.

  3. Critical Facts (cont’d) • PHOTOTRANSDUCTION occurs via a 4 step process that uses a 2nd messenger cascade to amplify the signal. In rods, activation of rhodopsin ultimately results in the closure of cyclic nucleotide gated Na+ channels, and hyperpolarization of the photoreceptor. • The VISUAL CYCLE consists of bleaching and recycling of 11-cis-retinol between the photoreceptors and the retinal pigment epithelium (RPE). It is a key component of dark adaptation in rods and is disrupted in vitamin A deficiency, and macular degeneration. • Ganglion cells (GCs) are like CNS neurons, in that their contrast-detecting capabilities are enhanced by lateral inhibition provided by amacrine cells. On-center GCs produce more action potentials when stimulated by a bright light in the center of their receptive field, and inhibited by stimuli delivered to the surround. Off-center GCs are stimulated by surround stimuli, and inhibited by center stimuli. • Perception of colour is a learned process which involves associating patterns of photoreceptor activity with a particular hue. Even though the distribution of cones within the retina is unique to each individual, the description of hue is standardized by teaching people to associate specific words with their unique pattern of cone response. • Within primary visual cortex (V1), inputs from the fovea are overrepresented relative to the periphery. The separate maps that are established for each visual field in primary V1 are merged to form a single perceptual map of visual space. Due to OCULAR DOMINANCE, cortical can extract depth cues based on the disparity in the images, providing the basis for STEREOPSIS (depth perception). • STRABISMUS is a muscle imbalance that results in a misalignment of the visual axes of the two eyes. Any type of strabismus that occurs after ~6 months of age causes DIPLOPIA (perception of a single object as double) because the images fall on noncorresponding parts of the retinas. In young children, suppression of the image in the weaker eye can cause a permanent decrease in visual acuity (AMBLYOPIA).

  4. Essential Material from Other Lectures • Structure of the eyeball, including the innervation of the levator palpebrae superioris and superior tarsal muscle, the lacrimal gland, the cornea and the lens (Dr. Severson, Applied Anatomy) • CSF formation (Dr. Drewes, Nervous System) • Pupillary reflex/innervation of the dilator and constrictor muscles of the pupil (Dr. Forbes, Nervous System) • Anatomical structures associated with aqueous humor formation and flow, including the ciliary body and the canal of Schlemm (Dr. Severson, Applied Anatomy). • Histology of the retina (Dr. Downing, Nervous System). • Receptor potentials and lateral inhibition (Dr. Fitzakerley, Nervous System) • Visual Fields (Dr. Forbes, Nervous System)

  5. Learning Objectives • Be able to describe the neurotransmitters involved in eyelid movements, and characterize the purpose and types of blinking. Explain tear production and how it is regulated. • Explain the processes of refraction and accomodation as they apply to transmission of light to the retina. Define the following refractive errors: cataracts, hyperopia, myopia, presbyopia and astigmatism. • Describe the processes of mydriasis and miosis, including the neurotransmitters involved. • Explain how the aqueous humor is formed and drains, and outline control mechanisms for each part of the process. Detail the differences between closed angle and open angle glaucoma. • Compare and contrast the physiology of rods and cones. Relate the physiological differences between rods to the different forms of visual acuity. Differentiate between retinopathy and retinitis pigmentosa. • List the steps in phototransduction, including the properties of the receptor potential. • Describe the visual cycle, and understand the perturbations that occur to this process during vitamin A deficiency and macular degeneration. • Outline how lateral inhibition contributes to the receptive field properties of ganglion cells. Describe the function of bipolar, horizontal and amacrine cells. • Explain how the primary visual cortex processes color and motion, and generates depth perception. Describe how amblyopia develops from stabismus and diplopia.

  6. OPTICS

  7. There are two fundamental protective mechanisms for the eye. Regulation of eyelid position (including BLINKING) involves striated (ACh; nicotinic) and smooth (NE; α1 adrenergic) muscles. TEAR PRODUCTION occurs spontaneously (basal), reflexly or in response to emotional stimuli, and is partially regulated by the parasympathetic nervous system (ACh; muscarinic). EPIPHORA (overflow of tears) can be due to either overproduction or blocked drainage. Protective Mechanisms

  8. Blinking • eyelid movements are mediated by the orbicularis oculi (OO) and levator palpebrae superioris (LPS) muscles, as well as by the superior tarsal muscle (ST) • OO and LPS are striated muscles (ACh acts on nicotinic receptors to cause contraction) • the superior tarsal muscle is a smooth muscle (sympathetic innervation via α1 receptors) • three types of motions:

  9. Blinking • blinking serves a number of functions, including: • corneal lubrication • eye protection • visual information processing • blinking can be spontaneous or reflex • spontaneous blinking: • is precisely conjugated, periodic, symmetrical, brief and occurs in the absence of external stimuli or internal effort • show a wide variation in rate (typically 10-20 blinks/minute in adults; lower in children) • originates in premotor brainstem structures that are highly influenced by dopaminergic activity • decreased in Parkinson's disease, and increased in schizophrenia and Huntington's disease, for example • the blink reflex: • can be initiated by either touch to the cornea (afferents in the trigeminal nerve) or by bright light/rapidly approaching objects (afferents in the optic nerve) • is faster than spontaneous blinking

  10. Tear Production • the tear film that covers the suface of the eye has 3 layers: • lipid secred by oil glands in the eyelids • aqueous-based solution from lacrimal gland (contains lysozyme and other enzymes that provide protection against infection) • mucous from the conjunctiva • the composition of the tear layer varies depending upon the stimulus and with age • emotional tears contain more hormones, such as prolactin, ACTH and enkephalin • basal tear production decreases with age

  11. Tear Production • tear flow occurs via evaporation and drainage through the nasolacrimal ducts into the nasal cavity • parasympathetic stimulation produces epiphora (overflow of tears) by: • increasing tear production by the lacrimal gland • decreasing outflow by facilitating closure of the lacrimal duct passage • epiphora can be induced by: • stimulation of the cornea (cranial nerve V) which produces reflex tears • strong emotional responses (mediated by the limbic system, especially the hypothalamus) which produce psychic tears (crying or weeping) • strong parasympathetic stimulation is accompanied by other symptoms, like reddening of the face and convulsive breathing

  12. The cornea and lens focus light on the retina; the cornea has greater refractive power but the focusing power of the lens can be adjusted to allow near vision (accomodation). Refractive errors include cataracts, hyperopia, myopia, presbyopia and astigmatism. Focusing

  13. Refraction

  14. Accomodation

  15. Refractive Errors

  16. Light intensity is regulated by the PUPILLARY LIGHT REFLEX, which causes MIOSIS as a result of parasympathetic stimulation of the sphincter pupillae muscles (muscarinic receptors). MYDRIASIS results from sympathetic stimulation (α1 receptors) that activates the dilator pupillae muscles. Regulation of Light Intensity

  17. Increased intraocular pressure causes loss of vision (potentially permanent). Open angle glaucoma (the most common form) results from overproduction of the aqueous humor. Closed angle glaucoma (typically the most rapidly evolving form) is caused by blockage of fluid outflow. Formation of the Aqueous Humor

  18. Glaucoma

  19. PHYSIOLOGY OF THE RETINA

  20. Visible Light

  21. Rods are responsible for SCOTOPIC vision (the monochromatic vision that occurs in low light). The three types of cones (blue, green and red; or Short, Medium and Long wavelength) have better temporal and spatial resolution than rods, making PHOTOPIC VISION better for discrimination of surfaces and movement under bright light conditions. Photoreceptors

  22. The ability to discriminate fine details of the visual scene is termed VISUAL ACUITY. Three types are recognized: SPATIAL, TEMPORAL and SPECTRAL. Visual acuity is primarily a function of the cone system. Visual Acuity

  23. PHOTOTRANSDUCTION occurs via a 4 step process that uses a 2nd messenger cascade to amplify the signal. In rods, activation of rhodopsin ultimately results in the closureof cyclic nucleotide gated Na+ channels, and hyperpolarization of the photoreceptor. Phototransduction

  24. Receptor Potential

  25. Retinosis Pigmentosa

  26. Retinopathy

  27. The VISUAL CYCLE consists of bleaching and recycling of 11-cis-retinol between the photoreceptors and the retinal pigment epithelium (RPE). It is a key component of dark adaptation in rods and is disrupted in vitamin A deficiency, and macular degeneration. Visual Cycle

  28. Vitamin A Deficiency

  29. Macular Degeneration

  30. Ganglion cells (GCs) are like CNS neurons, in that their contrast-detecting capabilities are enhanced by lateral inhibition provided by amacrine cells. On-center GCs produce more action potentials when stimulated by a bright light in the center of their receptive field, and inhibited by stimuli delivered to the surround. Off-center GCs are stimulated by surround stimuli, and inhibited by center stimuli. Ganglion Cell Physiology

  31. VISUAL CORTEX PHYSIOLOGY

  32. Colour Perception

  33. Perception of colour is a learned process which involves associating patterns of photoreceptor activity with a particular hue. Even though the distribution of cones within the retina is unique to each individual, the description of hue is standardized by teaching people to associate specific words with their unique pattern of cone response. Colour Perception

  34. Edge Perception

  35. Within primary visual cortex (V1), inputs from the fovea are overrepresented relative to the periphery. The separate maps that are established for each visual field in primary V1 are merged to form a single perceptual map of visual space. Due to OCULAR DOMINANCE, cortical can extract depth cues based on the disparity in the images, providing the basis for STEREOPSIS (depth perception). Topographic Maps

  36. Depth Perception

  37. STRABISMUS is a muscle imbalance that results in a misalignment of the visual axes of the two eyes. Any type of stabismus that occurs after ~6 months of age causes DIPLOPIA (perception of a single object as double) because the images fall on noncorresponding parts of the retinas. In young children, suppression of the image in the weaker eye can cause a permanent decrease in visual acuity (AMBLYOPIA). Development

More Related