1 / 23

PARIS detector

PARIS detector. Adam Maj f or the PARIS collaboration. PROMETEO 2011 Valencia, 17-18 November , 2011. PARIS desing concepts: Design and build high efficiency detector consisting of 2 shells (or 1 phoswich shell) for medium resolution spectroscopy

cleave
Download Presentation

PARIS detector

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PARIS detector Adam Maj for the PARIS collaboration PROMETEO 2011 Valencia, 17-18 November, 2011

  2. PARIS desing concepts: Design and build high efficiency detector consisting of 2shells (or 1 phoswich shell) for medium resolution spectroscopy and calorimetry of g-rays in large energy range Innersphere, highly granular,made of new crystals (LaBr3(Ce)), to be used as a multiplicity filter of high resolution, sum-energy detector (calorimeter), detector for the gamma-transition up 10 MeV with medium energy resolution.It may serve also for fast timing application. Outersphere, with high volume detectors,made of conventional crystals (BaF2 orNaI), to be used for high-energy photonsmeasurementoras an active shield for the innershell.. 2-shell or phoswichconcept, in addition to being more economic, shall help to distinguish a high-energy photon from a cascade of low energy gamma transitions in fusion evaporation reactions

  3. PARIS physics cases for SPIRAL2 • h) Multiple Coulex of SD bands • 36<A<50 • (P. Napiorkowski, F, Azaiez, A. Maj et al.) • Relativistic Coulex • (afterpostacceleration) • 40<A<90 • (P. Bednarczyk et al.) • j) Nuclear astrophysics (p,g) • e.g. 90Zr • (S. Harissopulos al.) • k) Shell structure at intermediate energies (SISSI/LISE) • 20<A<40 • (Z. Dombradi et al.) • l) Shell structure at low energies • (separator part of S3) * • 30<A<150 • (F. Azaiez, I. Stefan, B. Fornal et al.) • PDR studied with GASPARD+PARIS • D. Beaumel et al. • PDR in proton-rich nuclei with NEDA+PARIS • G. De Angelis et al. • Onset of chaotic regime: PARIS+AGATA • S. Leoni et al. • p) Evolution of nuclear structure of 78Ni and 132Sn with ACTAR+PARIS • G.F. Grinyer et al. * - flagship • Jacobi and Poincare shape transitions (+AGATA) * • 130-142 Ba, 116-120Cd,88-98Mo, 71Zn • (A. Maj, J. Dudek, K. Mazurek et al.) • b) Studies of shape phase diagrams of hot nuclei – GDR differential methods • 186-193Os, 190-197Pt • (I. Mazumdar, A. Maj et al.) • c) Hot GDR studies in neutron rich nuclei * • (D.R. Chakrabarty, M. Kmiecik et al.) • d) Isospin mixing at finite temperature • 68Se, 80Zr, 84Mo, 96Cd, 112Ba • (M. Kicińska-Habior et al.) • e) Onset of the multifragmentation and the GDR (+FAZIA) • 120<A<140, 180<A<200 • (J.P. Wieleczko, D. Santonocito et al.) • f) Reaction dynamicsby means of g-ray measurements • 214-222Ra, 118-226Th, 229-234U • (Ch. Schmitt, O. Dorvaux et al.) • g) Heavy ion radiative capture * • 24Mg, 28Si • (S. Courtin, D.G. Jenkins et al.)

  4. PARIS has to • be transportable (between different facilities) • be modular (to be connected with other detectors: AGATA, GASPARD, NEDA, FAZIA, ACTAR ...) • have high granulation (multiplicity measurement, Doppler correction,...) • have very high efficiency for high-energy g-rays • have good timing resolution (<500 ps) • have energy resolution as good as possible • have some position sensitivity

  5. Several geometries studied ‘cubic’-like ‘Ideal’ - spherical ‘radial’-like CONCLUSION: PARIS made of clusters: Cluster = 9 phoswiches This allows cubic or semi-spherical geometry

  6. LaBr3 2”x2”x2” NaI (2”x2”x6”) PMT Basic element: a phoswichLaBr3+NaI 5 prototypeswereordered from Saint Gobain: 1 to Orsay, 1 to Strasbourg, 3 to Krakow Theystarted to arrive 2 months ago only LaBr3 LaBr3 + NaI onlyNaI

  7. LaBr3 2”x2”x2” NaI (2”x2”x6”) PMT Source 662 keV (137Cs) 1173 keV (60Co) 1332 keV (60Co) Q(1080 ns) Q(120 ns)

  8. Phoswichtestsresults

  9. Constructing one cluster Present End 2011 First half of 2012

  10. Simulations for one cluster made of 9 phoswiches Partialaddback: LaBr3+ LaBr3_NaI Full addback: LaBr3+ LaBr3_NaI+NaI

  11. Event generator for PARIS based on MC Cascade g-Fold Angularmomentum g-Fold>30 g-Fold<6

  12. PARIS roadmap MoU Meeting in Orsaym 15.09.2011: Decision to go for MoU for PARIS Phase2 (2012-2015), to be signed in January 2012 (France, Poland, India, Italy,….)

  13. Otheractivities: • Puls shapeanalysis: electronics for PARIS shall be based on NUMEXO2 solution (synergy with EXOGAM2 and NEDA) • Simulation software for GASPARD and PARIS • Simulation software for SHOGUN and PARIS • Commonphysicscases with GASPARD and NEDA in preparation • Workstarted do adapt the Krakow RFD to PARIS at SPIRAL2 beamsexperiments

  14. SUMMARY • LaBr3+NaI phoswichis a viablesolution for the elements of the eventual PARIS calorimeter, in terms of itmeeting the requirements for energy and timing resolution • The next step is to explore the performance of a cluster of 9phoswichdetectors - thisphasehasalreadybegun with 5 (4) detectorsdelivered and a further 4on order • In-beamtesting of thisclusterwillproceedsoon • The nextphasewill be a demonstrator of 4clusterseach of 9phoswichdetectors. • At ourmeeting in September 2011, we haveestablished the framework for the nextstagethroughdiscussion of the form of anMoU, which we hope to havereceivedsufficientsignatures by January 2012.

  15. PARIS Management board A. Maj - project spokesman; D.G. Jenkins, J.P. Wieleczko, J.A. Scarpaci - deputies PARISAdvisoryCommittee F. Azaiez (F) -chairman, D. Balabanski (BG), W. Catford (UK), D. Chakrabarty (India), Z. Dombradi (H), S. Courtin (F), J. Gerl (D), D. Jenkins (UK) - deputy chairman, S. Leoni (I), A. Maj (PL), I. Matea(F), Ch. Schmidt (F) • Active working groups • Simulations (O. Stezowski et al.) • PARIS mechanical design scenarios (S. Courtin, D. Jenkins et al.) • Physics cases and theory background (Ch. Schmitt et al.) • Detectors (O. Dorvaux et al.) • Electronics (P. Bednarczyk et al.) • PARIS-GASPARD synergy (J.A. Scarpaci et al.) J. Pouthas – PARIS liaison to SPIRAL2 project management

  16. F. Azaiez, D. Balabanski, P. Bednarczyk, J. Bettane, C. Bonnin, S. Brambilla, M. Ciemała, D.R. Chakrabarty, S. Courtin, A. Czermak, O. Dorvaux, M. Dudeło, C. Finck, A.K. Gourishetti, G. Hull, M. Jastrząb, D. Jenkins, M. Kmiecik, S. Kumar, D. Lebhertz, I. Matea, I. Mazumdar, K. Mazurek, P. Medina, C. Mehdi, V. Nanal, P. Napiórkowski, J. Peyre, J. Pouthas, M. Rousseau, O. Roberts, Ch. Schmitt, O. Stezowski, J.P. Wieleczko, T. Zerguerras and M. Ziębliński paris.ifj.edu.pl

  17. Piotr Bednarczyk Electronics for PARIS

  18. Basic requirements for the PARIS electronics • Serve 200-1000 detector channels (energyandtimeperchannel) • Perform pulse shape analysisfor disentanglement of overlapping signals from a phoswitchcomponents • Deal with fastsignals of LaBr3: risetime <1ns, decaytime ~20 ns • Provide gamma time and energy relative to an external signal • Stand rates up to 100 kHz per channel • Keep time resolution better than 1 ns, for TOF purposes • Measure energies 1-50 MeV with3%resolution. • Trigger less readout with timestamping • Be compatible with GTSbasedDAQ

  19. GAMMA-TELESCOPE • E1 • E2 • CsI or BaF2 • (2”x6”) • LaBr3 • (2”x2”) • I • PMT • PMT • t1 • t2 • E1 • E2 • APD • LaBr3 • (2”x2”) • CsI or BaF2 • (2”x6”) • II • PMT • t1 • t2 • E1,E2 • III • LaBr3 • (2”x2”) • CsI(NaI) • (2”x6”) • PMT • T1,T2

  20. Phoswichtests in Strabourg O.Dorvaux, D.Lebhertz, C.Finck, et al NaI • CAEN V1751 1 or 2 GHz digitizer • TNT2 x4 (2.5 ns sampling) LaBr3

  21. Resolution vs samplingfrequency IPHC (M.Rousseau) 100 MHz 400-1000 MHz 0.7 1.1 1.3 simple ’short gate’ integration

  22. Jordanov trapezoid filter IPHC (M.Rousseau) Short gate Long gate LaBr3 DE/E: 3.2% (1.7 MeV) NaI DE/E: 5.1% (1.7 MeV) 100 MHz sampling should be sufficient Algorithm must be better tested

  23. NUMEXO MEZZANINE for PARIS • A hybrid consisted of analog (CFD) and digital electronics for time and energy determination respectively • PSA (Jordanov ?) -in VIRTEX6 ormezzanine (powerconsumptionissue) • Milano solution for timing : signalpre-shaping (analog cirquit)

More Related