1 / 77

天文觀測 I

天文觀測 I. Coordinate, Time & Name. 古老的科學. 天文學是一門古老的科學 幾乎所有的古文明都對天文有其傳承。 古老的科學至今仍能存在,通常有下面的過程: 定性 ( 半量化 ) 量化 以星星亮度為例 亮的星,暗的星 ( 定性 ) 星等 ( 一等星、二等星 ……) 較隨意的指定 無小數部分 較嚴格定義星等 每星等差 2.5 倍 (log scale) 有小數部分. 尊重傳統的科學. 天文學的另一特色 : 尊重傳統 如果傳統不太影響科學研究 以星等為例,它 “ 不太方便 ” ,但至今仍使用它

cormac
Download Presentation

天文觀測 I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 天文觀測 I Coordinate, Time & Name

  2. 古老的科學 • 天文學是一門古老的科學 • 幾乎所有的古文明都對天文有其傳承。 • 古老的科學至今仍能存在,通常有下面的過程: • 定性 (半量化)量化 • 以星星亮度為例 • 亮的星,暗的星(定性) • 星等(一等星、二等星……) • 較隨意的指定 • 無小數部分 • 較嚴格定義星等 • 每星等差2.5倍(log scale) • 有小數部分

  3. 尊重傳統的科學 • 天文學的另一特色:尊重傳統 • 如果傳統不太影響科學研究 • 以星等為例,它“不太方便”,但至今仍使用它 • 數字小者亮,數字大者暗,與一般觀念相反 • Log scale(源自於肉眼對光之反應),非線性scale • 某些“新”的天文學已“更正”這個習慣,如X-ray天文學用erg/s/cm2來表示亮度。 • 其它如距離等都有類似現象(光年,秒差),弄到天文學好像變得很複雜。 • 要學會“行話”。 • 不同波段的研究者有不同的“行話”。 • 習慣就好。

  4. 星星的位置 • 古代:定性描述 • 文字:星星的特性,出沒時間 • 星圖,星區…… • 三垣、四象、廿八宿…… • 星座 • 獵戶、蛇夫…… • 辨認星座(肉眼觀測第一課) • 依星座命名 • 1603年,貝葉(Johannes Bayer) 使用星座中最亮叫,次亮叫…… • 不在星座(連線)上的呢?

  5. 天區 • 為統一星星屬於哪一個星座,國際天文聯合會(International Astronomical Union, IAU)1930年宣布將全天空依星座位置劃分為88個天區。 • 星座雖是在古希臘就開始定義,但至今仍在天文中廣泛應用。 • 如變星的命名 • SUUMa, DQ Her, V1445 Aql • 其後面三個字母就是變星所在天區。

  6. 位置的定量—天球座標 • 上述方法仍未能精確描述星星的位置。 • 引入類似地球經緯度或數學上球座標概念描述星星位置。 • 恆星位置原為一三度空間問題。 • 但由於距離量測在天文中是一大問題,暫時不管。 • 因此星星的位置變成一個二度空間的問題,需要二個述來描述其位置。 • 星星好似“嵌”在天球上,因此可用二個“角度”來描述其位置。 • 這二個角度必須先有“參考位置(方向)”(原點,零點),才可定義。 • 如球座標的零點為z軸

  7. 常用的天文座標系統 • 依不同零點之定義,天文上慣用於描述天體位置的座標有 • 地平座標系 • 赤道座標系 • 黃道座標系 • 銀河座標系 • 不同的座標系有不同的用途 • 所有座標系角度的算法都與地球經緯度相類似

  8. 地平座標系 • 一個完全以觀測者(或天文台)為觀點之座標系。 • 不同的觀測者在不同的位置有不同的地平座標系統。 • 同一個天體同一時間對不同地點的觀測者有不同的的地平座標。 • 由於地球在旋轉,天體的地平座標原則上隨時在變。 • 地平座標有時也用在其它方面(如航海)

  9. Horizon Coordinate (地平座標系) N Zenith W E Earth S

  10. Horizon Coordinate • Two angles • Altitude, a • Azimuths, A • X: location of star • B: projection of X on horizontal plane • Angle from B to X : altitude (a, 0º to 90º) • Angle between N to B : azimuths (A, 0º to 360º) • Azimuth direction : • N  E  S W Great circle Z X N B E

  11. Horizon Coordinate

  12. 地平座標系的應用 • 天體在地平座標隨時而變,它的應用為何? • 圓頂的連動 • 無論望遠鏡的mount為何形式,圓頂必跟著地平座標(Azimuths)而動 • Alt-Az形式的mount • 製作容易 • 機械運動簡單 • 容易平衡(可載較重儀器) • 可加儀器在Nysmith foci • 大型望遠鏡大多採使依形式

  13. Equatorial Coordinate (赤道座標系) • Also named Celestial Coordinate. • The Earth is a pretty good gyroscope so its axis points a constant in inertial space (??). • For an observer on ground, the stars look like rotating about an axis passing through the North Celestial Pole to South Celestial Pole. • Declination (δor DEC,赤緯): North Celestial Pole=+90º; equator= 0º ; South Celestial Pole= -90º • The other longitude-like coordinate called “right ascension” (α, RA, 赤經) whose zero point is defined as the location of the Sun on the vernal equinox (also called “first point of Aries”.

  14. Equatorial Coordinate

  15. Equatorial Coordinate

  16. Equatorial Coordinate

  17. Equatorial vs. Horizon Coordinate

  18. Equatorial vs. Horizon Coordinate

  19. Equatorial Coordinate • α : hour minute second • 1 circle = 24 hours; 1 hour= 60 min; 1 min= 60 sec • Why the RA uses such strange expression instead of the convenient degree? • In fact, you may imagine the celestial sphere is like a clock on sky rotating with period of 1 sidereal day (~23 hrs 56 min). The RA value on the meridian is the local sidereal time. • δ: degree (º) arcmin(`) arcsec(“) • Degree: -90º (South)-- 90º (North); 1 deg=60 arcmin; 1arcmin=60 arcsec

  20. Precession of Equinox (歲差運動) Actually the rotational axis of the Earth is not fixed in the inertial space. Since the mass distribution of the Earth is not spherical symmetry, due to the inclination between the plane of ecliptic and plane of equator (~23.5º), the Earth rotational axis precesses with period of 25800 years caused by the gravitational torque from the Moon and Sun. Thus the RA and DEC value of an astrophysical object is in fact change from time to time (change by tenths of arcsec per year). To correctly locate the source, the equatorial coordinate system renews every 50 year(called epoch). J2000, B1950 To express the location of a source, the epoch of coordinate system must be specified

  21. Precession of Equinox

  22. 注意epoch • 觀測時要注意使用的epoch,否則目標可能完全不在視野(Field of View, FOV)內 • 以鹿林一米望遠鏡為例:P1300視野約13角分。 • 若觀測Cyg X-1 ,以B1950 epoch當做J2000 epoch 將有24.5角分(0.47度)之差。 • 問題:歲差運動是連續的,也就是說就算我用J2000 epoch也未必能將光軸(影像中心)指向目標。 • 的確是,但現在用J2000 epoch應該是最接近的了,目標應在視野之內,這時就要用尋星圖(Finding Chart)比對,再將目標微調到視場中央。 • 我們應該用最接近的epoch,如在2025年後就應該用2050 epoch,所以2050 epoch應在十年左右發佈。

  23. Ecliptic Coordinate • Ecliptic coordinate: base on the orbit of the Earth about the Sun. It is almost identical to the equatorial coordinate except the north pole is define as the ecliptic north pole. • Ecliptic longitude: λ (degree (0 to 360), arcmin, arcsec ) • Ecliptic latitude: β (degree (-90 to 90) ), arcmin, arcsec ) • The Sun: β=0, rotates 360º per year alone the ecliptic equator. • Most of solar system objects lie on the low Ecliptic latitude

  24. Ecliptic Coordinate

  25. Ecliptic Coordinate

  26. Galactic coordinate • Galactic coordinate: • Equator: galactic plane • Zero point: galactic center • Galactic longitude: l (degree, 0 to 360) • Galactic latitude: b (degree -90 to 90 ) • Galactic center at about (,)=(17h 45m 37.224s −28° 56′ 10.23″) • In southern hemisphere • Observable but not very good in Taiwan • Galactic north pole at about (,)=(12h 51m 26.282s +27° 07′ 42.01″) • Most of galactic objects locate around b=0 • Budge objects: small B and l either close to 0 or close to 360

  27. Galactic Coordinate

  28. Celestial north

  29. Galactic Coordinate Distribution of pulsars: concentrated on the galactic plane, especial near b=0º since they are galactic sources.

  30. Galactic Coordinate Distribution of γ-ray burst: not concentrated on the galactic plane. They are probably not the galactic source

  31. Expressions of Source Location

  32. Angular Separation • How to describe the separation of two sources : angle • How to calculate the angular separation of the two sources?

  33. Angular Separation • However, the equation above is not sensitive to small angle since for small θ , which is a 2nd order approximation. • Alternatively , for small angular separation, we use:

  34. Radian vs. degree • The angle obtained above is in radian, which used mostly in math (calculus) • The applied angle system is in degree (arcmin, arcsec)

  35. Solid Angle • How do we describe an observed size of a extended source? • How do we describe the FOV if FOV is not a rectangular? • Solid angle: dA R

  36. Solid Angle • However, we sometimes prefer use square degree ……

  37. Time • Calendar date • 2002 Feb 3rd ….. • Year + date number • 2002, 1=2002 Jan 1st (no 2002, 0) • 2002, 34=34th day of 2002=2002 Feb 3rd • 2002, 34.3=2002 Feb 3rd 07:12:00 • UT=Universal time, count from 0h at midnight. Unit is mean solar day.

More Related