1 / 1

References

Semantics-Pragmatics-Interface for Metonymy Resolution Josef Meyer-Fujara (FH Stralsund) , Hannes Rieser (Uni Bielefeld). Baufix toy airplane used in construction dialogues. Reconstructed lf -expression With  = l s airplane’(s)

devaki
Download Presentation

References

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semantics-Pragmatics-Interface for Metonymy Resolution Josef Meyer-Fujara (FH Stralsund), Hannes Rieser (Uni Bielefeld) Baufix toy airplane used in construction dialogues Reconstructed lf-expression With = ls airplane’(s) Op[Nls airplane’(s)] = [N Op(ls airplane’(s))] = [N Op(airplane’)] = [N lx C (depicts(x,C) y (yC airplane’(y)))] or, e.g. = [N lx u (noise_of(x,u)  airplane’(u))] For a = xi (airplane’(xi) ly (=(y,xi)) this’), a possible result of applying Op is Op(a) =xi (C (depicts(xi,C) x (xC  airplane’(x))) ly (=(y,xi)) this’) Example sentence This is an airplane.  Determining the scope of metonymy by reconstructing false lf-expression via Op Intuition: Op(a) yields readings of a which cannot be derived lexically. For a tree T, Op(T) is defined recursively as the tree that results applying Op to the daughters of T’s root. For every one-place predicate j, Op(j) is either j or an expression j~ which contains j and is applicable to an argument, such as a one-place l-expression. Op(x P) = x Op(P) Etc.  Data Corpus of task-oriented dialogues (construction dialogues from SFB 360) LF-Structure of This is an airplane  Reconstructed lf-expression S S • Grammar: Syntax (GB-version) • Context-free base • Raising rules • [SX NP Y ]  [S NPi [SXeiY ] ], • where NP = [Det Nom] and X and Y cover the rest of the sentence • [S NP INFL X ]  [S INFL [S NP X] ] • generate LF • Scope of fragment: • This is an airplane. • Peter believes/knows that this is an airplane. • The airplane is left to the car and/or the car is right to the airplane. • Max gives that airplane to Peter. NP Pred NPi Result of Op-application to lf-structure Det Nom VP S: xi (C (depicts(xi,C)  x (xC  airplane’(x)))  this’ = xi) Vcop NP NPi: lS’ xi (C (depicts(xi,C)  x (xC  airplane’(x)))  S’) S’: ly (=(y,xi)) this’ an airplane this is ei Det: lPlS’ xi (P(xi)  S’) N: lu C (depicts(u,C)  x (xC  airplane’(x))) Pred2: ly (=(y,xi)) NP: this’ VP: ly (=(y,xi)) Det: this’ NP: xi Vcop: = lu C (depicts(u,C)  x (xC  airplane’(x))) Op airplane’ this’ = xi an’ lf-Structure of This is an airplane S’: x (airplane’(xi) ly (=(y,xi)) this’) • Conversational Implicature (Grice) by Default • Cooperativity Assumption • Two Cases: • Violation of quality maxim • Utterance under lfa is false. • Scope of metonymy: subutterance with lfb: • bM,w,i,c,g avail(c) =  • Op(b)M’,w,i,c,g avail(c)  • Default: Meaning of subutterance is Op(b)M’,w,i,c,g • Meaning of utterance is Op(a)M’,w,i,c,g • by recursiveness of Op • Violation of relevance maxim, similarly  Intensional Semantics Mapping of LF into lf (intensional predicate calculus, IPC) yields expression a Uses possible worlds, time instants, contexts and modal bases NPi: lS’ xi (airplane’(xi)  S’) S’: ly (=(y,xi)) this’ Det: lP lS’ xi (P(xi)  S’) N: lz airplane’(z) NP: this’ Pred2: ly (=(y,xi)) VP: ly (=(y,xi)) Det: this’ Case 1: Violation of quality maxim b = airplane’ Op(b) = lu C (depicts(u,C) x (xC  airplane’(x))) Case 2: Violation of relevance maxim This is not a motorbike said of an airplane model a° =  xi (motorbike(xi) ly (xi=y) this’) Op(a°) = xi (C (depicts(xi,C)  x (xC  motorbike(x)))  this’=xi) NP: xi Vcop: = •  Models M used: Kaplan models • characterized by • a set of worlds W, and a set of instants I, giving the set of circumstances W  I = {<w, i> | wW, iI }, • a context c specifying • sp(c), the speaker in c • ind-ob(c), the indicated objects in c, • avail(c), the set of accessible objects in c • mdb(c), the modal base in c • a valuation function V for IPC • a variable assignment function g an’ airplane’ this’ xi = a = xi (airplane’(xi) ly (=(y,xi)) this’)  Metonymical interpretation of false lf-expression by default = Interpretation of reconstructed lf-expression in model M’: Case 1: Violation of quality maxim Op(a)M’,w,i,c,g = 1 Case 2: Violation of relevance maxim Op(a°)M’,w,i,c,g = 1 and non-trivially so Kaplan model M W = {w1, w2}, I = {i1}, W  I = {<w1, i1>, <w2, i1>} U = {airplane-model1, airplane1, airplane2, , {airplane1, airplane2}} ind-obj(c) = airplane-model1 avail(c) = {airplane-model1} mdb(c) = {<w1, i1>} V(airplane’)(c)(<w,i>) = {airplane1, airplane2} for all <w,i>  W  I g(x1) = airplane1, g(C) = , etc.  Interpretation in model M (cf ) aM,w,i,c,g = 0 (quality maxim violated) a°M,w,i,c,g = 1 trivially (relevance maxim violated) • Updating information state • with formula Op(a) derived by default and constructing M’ by persistently extending M, especially V • Case of violated quality maxim • Interpretation in model M’: V is extended to include, e.g., depict, noise_of Case of violated quality maxim Interpretation in model M: xi (airplane’(xi) ly (=(y,xi)) this’)M,w,i,c,g = 0 xi (C (depicts(xi,C) x (xC  airplane’(x)))  this’ = xi) M,w,i,c,g = 1   depict  as  =  Real-world airplanes Real-world airplanes avail(c) avail(c) Op Contact josef.meyer-fujara@fh-stralsund.de hannes.rieser@uni-bielefeld.de .ppt-File downloadable from www.sfb360.uni-bielefeld.de and www.user.fh-stralsund.de/~jmeyer References Chierchia, G. & McConnell-Ginet S. (2000) (2nd ed.). Meaning and Grammar. An Introduction to Semantics. Cambridge, Mass.: The MIT Press Grice, P. H. (1989). Studies in the Way of Words. Harv. Univ. Press Levinson, S. C. (2000). Presumptive Meanings. Cambridge, Mass.: The MIT Press Meyer-Fujara, J. & Rieser, H. (2003). A General Framework for Metonymy Resolution. Report of SFB 360, Univ. Bielefeld, to appear Meyer-Fujara, J. & Rieser, H. (1999). Zur Semantik von Repräsentationsrelationen II. Report 1999/01 of SFB 360, Univ. Bielefeld Rieser, H. & Meyer-Fujara, J. (eds.) (2000). BI-Metonymy 6th to 8th of October, 2000, Proceedings, Report 2000/01 of SFB 360, Univ. Bielefeld Rieser, H. & Meyer-Fujara, J. (1997). Zur Semantik von Repräsentationsrelationen I. Report 1997/07 of SFB 360, Univ. Bielefeld SFB 360 (eds.): o. J., Wir bauen jetzt also ein Flugzeug. Konstruieren im Dialog. Arbeitsmaterialien Interaktion sprachlicher und visueller Informationsverarbeitung. SFB 360, Univ. Bielefeld

More Related