1 / 17

Understanding Capacitors: Types, Uses, and Conversion Values

Learn about the different types of capacitors, their uses in circuits, and how to interpret their values. Also, discover conversion values for capacitance measurement.

dhebert
Download Presentation

Understanding Capacitors: Types, Uses, and Conversion Values

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Early capacitors or “condensers” were known as Leyden Jars. They were named after the university where they were developed.

  2. Today’s capacitors look more like these Start Run Surface Mount Ceramic Variable Electrolytic Noise Suppression

  3. FUNCTION Capacitors store electrical charge. They are used in timing circuits because it takes time for a capacitor to fill with charge. They are used to smooth varying DC supplies by acting as a reservoir of charge. They are used in filter circuits because capacitors easily pass AC (changing) signals but they block DC (constant) signals.

  4. Capacitance • This is a measure of a capacitor's ability to store charge. • A large capacitance means that more charge can be stored. • Capacitance is measured in farads, symbol F. However 1F • is very large, so prefixes are used to show the smaller values. • Three prefixes (multipliers) are used, µ (micro), n (nano) and p (pico): • µ means 10-6 (millionth), so 1000000µF = 1F • n means 10-9 (thousand-millionth), so 1000nF = 1µF • p means 10-12 (million-millionth), so 1000pF = 1nF

  5. AIR

  6. Electrolytic Capacitors Electrolytic capacitors are polarized. They must be connected correctly. At least one lead will be marked + or -. There are two designs of electrolytic capacitors: Axial, where the leads are attached to each end. Radial, where both leads are at the same end.

  7. ELECTROLYTIC Usually polarized (has a + and – terminal) DC use only Cheap, not very accurate Good storage capability, wide range of voltage & µF Used in ripple filters, timing circuits & other, not good for high frequency De-rate voltage by 100% (for 12 volt circuit use 24 volt capacitor) CAN EXPLODE if rated voltage is exceeded or polarity reversed!

  8. ELECTROLYTIC FAILURE MODES What to look for

  9. TANTALUM They are electrolytic so watch for the '+' and '-' indicators Excellent temperature and frequency characteristics Small size, reliable, common values readily available Expensive, easily damaged by spikes, large values exists but hard to find

  10. Super Capacitors Despite the large capacitance value, its physical dimensions are relatively small. It has a diameter of 21 mm (almost an inch) and a height of 11 mm (1/2 inch). Like other electrolytics the super capacitor is also polarized so exercise caution in regards to the break-down voltage. Care must be taken when using this capacitor. It has such large capacitance that, without precautions, it would destroy part of a powersupply such as the bridge rectifier, volt regulators, or whatever because of the huge inrush current at charge. For a brief moment, this capacitor acts like a short circuit when the capacitor is charged. Protection circuitry is a must for this type.

  11. Variable Capacitors Used in radio tuning circuits Sometimes called 'tuning capacitors'. They have very small capacitance values, typically between 100pF and 500pF (100pF = 0.0001µF).

  12. Trimmer Capacitors Trimmer capacitors (trimmers) are miniature variable capacitors. They are designed to be mounted directly onto the circuit board and adjusted only when the circuit is built.

  13. PARALLEL CAPACITORS  Capacitors connected in parallel have their capacitance added together, which is just the opposite of parallel resistors. It is an excellent way of increasing the total storage capacity of an electric charge:Ctotal = C1 + C2 + C3

  14. SERIES CAPACITORS Opposite of calculating resistors in series. Capacitors in series will have total capacitance lower than the lowest value.

  15. pF, nF, & µF A capacitor marked 105 means 10+5zeros = 10 + 00000 = 1.000.000pF = 1000 nF = 1 µF. Value is in pF (PicoFarads). The letters added to the value is the tolerance and in some cases a second letter is the temperature coefficient mostly only used in military applications. A ceramic capacitor with 474J printed on it it means: 47+4zeros = 470,000pF or 470nF or 0.47µF and J=5% tolerance.

  16. Capacitor Number Code • A number code is often used on small capacitors where printing is difficult: • the 1st number is the 1st digit, • the 2nd number is the 2nd digit, • the 3rd number is the number of zeros to give the capacitance in pF. • letters indicate tolerance and voltage rating. • For example:   102   means 1000pF = 1nF   (not 102pF!) • For example:   472J means 4700pF = 4.7nF (J means 5% tolerance).

  17. microFarads (µF) nanoFarads (nF) picoFarads (pF) 0.000001µF = 0.001nF = 1pF 0.00001µF = 0.01nF = 10pF 0.0001µF = 0.1nF = 100pF 0.001µF = 1nF = 1000pF 0.01µF = 10nF = 10,000pF 0.1µF = 100nF = 100,000pF 1µF = 1000nF = 1,000,000pF 10µF = 10,000nF = 10,000,000pF 100µF = 100,000nF = 100,000,000pF CONVERSION VALUES

More Related