1 / 30

GEM を用いた大アクセプタンス検出器 に用いる読み出し回路の開発

GEM を用いた大アクセプタンス検出器 に用いる読み出し回路の開発. 検討. 東大・理 小沢 恭一郎. Example: E16 Detector. Tracker ~100 μ m の分解能 ハイレートへの耐性 (5kHz/mm 2 ) 少ない物質量 (1 チャンバーにつき ~0.1% ). Electron identification Large acceptance High pion rejection @ 90% e-eff. 100 @ Gas Cherenkov 25 @ EMCal. Items.

dorcas
Download Presentation

GEM を用いた大アクセプタンス検出器 に用いる読み出し回路の開発

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GEMを用いた大アクセプタンス検出器に用いる読み出し回路の開発GEMを用いた大アクセプタンス検出器に用いる読み出し回路の開発 検討 東大・理 小沢 恭一郎

  2. Example: E16 Detector • Tracker • ~100μm の分解能 • ハイレートへの耐性(5kHz/mm2) • 少ない物質量 • (1チャンバーにつき~0.1% ) • Electron identification • Large acceptance • High pion rejection @ 90% e-eff. • 100 @ Gas Cherenkov • 25 @ EMCal K. Ozawa

  3. Items Develop 1 detector unit and make 26 units. GEM Tracker CsI+ GEM photo-cathode • 50cm gas(CF4) radiator • ~ 32 p.e. expected • CF4 also for multiplication in GEM • Ionization (Drift gap) • + Multiplication (GEM) • High rate capability • + 2D strip readout • Hadron Blind detector • Gas Cherenkov for e-ID K. Ozawa

  4. GEM Tracker Collaboration with KEK • Gas: p10 or Ar/CO2 • Currently, p10 gas is used due to a large diffusion. 700 mm pitch (350 mm x 2) for both side K. Ozawa

  5. Prof. S. Uno @ MPGD WS Signal from GEM foil Signal from Readout pad 150mV 80ns Easy signal handling • GEM Response function No magnetic Field/ No Drift region σ=181.2±0.3 μm σ=359.7±0.4 μm Pulse shape P10 Ar-CO2 (70/30) Response function • Time constant is from the drift time in the last gap. (No ion tail) • It can be reduced to ~20ns. Width of signal spread is consistent with transverse diffusion in GEM (along 3layers ). K. Ozawa

  6. Read out configuration • FPGA Board • Depends on each experiment ASIC • Front-end: • Charge-sensitive preamplifier • Ci~ 1pF • Shaper • Digitize: • Charge • Timing • Time Spread • Detector out • Initial Charge ~ 100e • GEM gain ~ 104 • Capacitance: Strip K. Ozawa

  7. Front-End Electronics: Candidate 1 APV-S1 chip • Originally, it’s developed for CMS Si detector. • Also, it’s used for COMPASS GEM K. Ozawa

  8. Prof. T. Fusayasu @ IEEE/NSS Candidate 2: Fusayasu chip Made by T. Fusayasu for GEM x-ray detector (strip readout) • 8 chs./package • Input range50fC ~ 1pC • 10MHz-10bit ADC and 100MHz-10bit TDC • Operating voltage±2.5V • Power50mW/ch • noise15000e @Cd=50pF K. Ozawa

  9. Dr. T. Uchida@ MPGD WS Front End ASIC by KEK • Front end ASIC for gas detector • Developed by KEKDr. Fujita • Specification • Amp. ,shaper, discriminator • 8 chs./package • Output8 LVDS, 1 analog-sum • Operating voltage±2.5V • Power30mW/ch • Input range-1.5pC~ +1.5pC • noise6000e @Cd=100pF FE200X Not including ADC, Just 1 bit information per channel K. Ozawa

  10. ILC R&D • Pre-amp/Shaper chip: • 16 chan/chip*8chips/card=128chan/card • Gain & shaping time adjustable • 400 e’s noise in reasonably large system • Digitizer based upon ALTRO chip: • 10 bit 20 MHz ADC • 1k sample storage • In Japan, • A. Sugiyama (Saga University) • T. Fusayasu (Nagasaki Institute of Applied Science ) • In addition, they are developing a pixel readout chip. QPIX: 100mm pixel, 0.5p max inputs, 14 bits ADC, 10ns timing resolution K. Ozawa

  11. Prof. A. Matsuzawa (TIT) 100 mm 100 mm Further optimization QPIX Chip area can be reduced to 100um x 100um by further circuit optimization. 0.18um CMOS 7 1 : 6b-SAR ADC 2 : OP Amp 3 : Comparator 4 : 14b-Register 5 : 8b-ToT Counter 6 : Control Logic 7 : 14b-ToF Register 8 : MIM Cap (2p) 6 8 5 3 2 4 140 mm 1 200 mm K. Ozawa

  12. Prof. A. Matsuzawa (TIT) Performance table End of ‘09 Now K. Ozawa

  13. Hadron Blind Detector Cerenkov photon CsI光電面によるCherenkov光検出器 Electron CF4 Radiator • 紫外域に感度を持つCsI光電面 • Cherenkov光検出に最適 • GEM上面にCsI光電面を蒸着 • 100 mm GEMを用いる • Radiator ガス: CF4 • High transmission @ UV MESH Ionization (40) 5.25 mm Photoelectron (32) CsI LCP (100um) • pThreshold 4 GeV/c • GEM3層を電子増幅に使用 • Gain ~ 800 @ CsI GEM Important for e/p • Pad読み出しで位置情報も • 逆電圧による電離電子の抑制!! 3.25 mm 32 x 800 50um GEM 1.5 mm 50um GEM 2 mm pad By K. Aoki K. Ozawa Ref. NIM A523, 345, 2004

  14. Read out configuration FPGA Board commercial FADC Preamp-Card • Front-end: • Charge-sensitive preamplifier • Ci~ 1pF • Shaper • Digitize: • Charge • Timing • Time Spread • Detector out • Initial Charge ~ a few e • GEM gain ~ 104 • Capacitance: • Large Pad K. Ozawa

  15. 15 mm 19 mm Preamp (BNL IO-1195) 2304 channels total PHENIX Pre Amplifier Charge Preamp with On-Board Cable Driver • Features: • +/- 5V power supply. • 165 mW power dissipation. • Bipolar operation (Q_input = +/- ) • Differential outputs for driving 100 ohm twisted pair cable. • Large output voltage swing -- +/- 1.5V (cable terminated at both ends) • (+/- 3V at driver output) • Low noise: Q_noise = 345e (C_external = 5pF, shaping = .25us) • (Cf = 1pF, Rf = 1meg) • Size = 1.04” x 0.775” 10pins • Preamp output (internal) will operate +/- 2.5V to handle large pile-up. K. Ozawa

  16. IO1195-1-REVA K. Ozawa

  17. Test with GEM Detector PA Pulse Trace on Scope Pulser Input(1.2pF)~ 13mV100,000 e-’s • Input capacitance ~ 0.0 pF?? • 20 pe x 5E3 (gain) ~ • 100,000 electron input into • pre-amp • Baseline Noise~ 1100e-’s • after background is subtracted • off. s(Baseline Noise) ~1100 e-’s PA Output~48mV  PA Pulse Height Spectrum B.Azmoun K. Ozawa

  18. FEM Block Diagram FPGA Receive/buffer ADC data Format triggered Events Generate L1 Primitives Receive timing /clocks 8 Channels 65 MHz 12 bits ADC Differential Receiver Connector Data path LL1 trigger FEM Crate Diagram Trigger data interface FEM FEM FEM FEM Optical Detector signals GTM/Ethernet K. Ozawa DCM

  19. The 8 channel 12 bits 65MHzADC TI ADS5272 The ADC receives differential signals The Vcommon is 1.5V The +/- input can swing from 1V to 2V + side 2V, - side 1V -> highest count - side 2V, + side 1V -> lowest count Our +/- input will swing from 1.5 to 2V/ 1 to 1.5V we will only get 11 bits out of 12 bits 16fc will be roughly sitting 200 count We will run the ADC at 6X beam crossing clock 6X9.4 MHz = 56.4 MHz or ~17.7ns per samples K. Ozawa Cost: $25 per channel

  20. HBD FEM Clock input Trigger output Signal cable input K. Ozawa

  21. まとめ • E16実験のための検出器開発が、理研、東大などで活発に行われている。読み出し回路の開発はこれから。 • High Beam intensityと大立体角測定に対応するためGEM Trackerを使用する。 • 読み出しは、ストリップ • Front-end は集積度を上げる必要がある。 • 大立体角で電子識別を行うために、CsI + GEMを光電面に用いたチェレンコフ光検出器(Hadron Blind Detector)を使用する。 • 平均20p.e.程度しか期待できないため、low noise は必須 • そのあとは出来るだけ安く上げたい。 K. Ozawa

  22. Back up K. Ozawa

  23. Good @ high rate counting • MWPC limitation • Wire spacing: 1~2 mm • Gain dropping @ high rate • Micro strip gas chamber • Discharge problem • Micromegas • Another candidate • GEM • Flat gain over 105 Hz/mm2 • I like flexibility of configuration • Good characteristics of signal • Signal is generated by electron • Not by ion • No ion tail and pole cancellation electronics MWPC 104 105 GEM 104 105 I took these ideas and figures from F. Sauli’s presentation at XIV GIORNATE DI STUDIO SUI RIVELATORI Villa Gualino 10-13 Febbraio2004 K. Ozawa

  24. Frontend OP amp OP amp feature obtained by schematic simulation Standard Folded-Cascode OP amp K. Ozawa

  25. Test Charge Measurement 1pF 1pF - + ADC ~ ~ ~ VT=40mV GEMFE2 ch0 Test Pulse 100ns Good linearity was obtained at 1MHz ADC operation except for lower and upper edge of the range. K. Ozawa

  26. Noise Measurement 10k electrons @ Cd=0pF (15k@50pF)  Enough for our purpose. K. Ozawa

  27. CSIを用いた光電面 • 3種類の光電子収集の方法 Transmissive By Weitzman • Transmissiveを選択 • 比較的高い量子効率 • 少ないphoton feedback 一番上のGEMにCSIを蒸着して実現 5 10 15 [eV] CSIの量子効率 K. Ozawa

  28. HBD FEE 48 channels per FEM 3 signal cables to detector. 4 signal pairs to HBD LL1 crate – within the racks Clock cable from interface to the FEM – within the crates (back) 6UX160mm card size Interface module GTM (clock, L1 trigger etc.), Ethernet interface for slow download. Control test pulse – don’t know the cable size yet. Data output module 1 optical module per card Crate has 16 FEMs 4 optical output modules 1 interface module HBD readout will fit into 3 6U crates HBD LL1 module potentially could fit into one 6U crate. Power – 5V digital, +4 analog, -3.3V analog – 1KW per crate (?) We will use a standard VME 6U crate mechanics with custom backplane. We will bring the crates. Need space to route the signal cables to the FEM Need to know how long is the cable routing path- Signal cables are custom made K. Ozawa

  29. Use 2MM Hard Metric cable to move signals between preamp/FEM 2mm HM connector has 5 pins per row and 2mm spacing between pins and rows There are two types of cable configuration: *100 ohms parallel shielded cable 50 ohms coaxial cable Signal arrangement S- S+ G S+ S- Our choice is This gives us signal density 2mm x 10mm for every 2 signals. Same type of cables will be used for L1 trigger data. K. Ozawa

  30. The differential receiver Use Analog Device AD8138 receiver set up as unity gain Simulation result For 16fc input charge Total voltage On the cable Total voltage Seen by ADC ADC has 1V range Max ADC range is about ~10 time of 16fc ADC +/- inputs K. Ozawa

More Related