1 / 33

PERTEMUAN 8-9 METODE GRAFIK

PERTEMUAN 8-9 METODE GRAFIK. Metode Grafik : Pemecahan persoalan Program Linear dengan metode grafik ini dibagi 3 (tiga) kasus, yaitu : (1). Kasus Maksimisasi. (2). Kasus Minimisasi. (3). Kasus-kasus Khusus. (1). Kasus Maksimisasi : kasus pemecah

dwight
Download Presentation

PERTEMUAN 8-9 METODE GRAFIK

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PERTEMUAN 8-9METODE GRAFIK

  2. Metode Grafik : Pemecahan persoalan Program Linear dengan metode grafik ini dibagi 3 (tiga) kasus, yaitu : (1). Kasus Maksimisasi. (2). Kasus Minimisasi. (3). Kasus-kasus Khusus.

  3. (1). Kasus Maksimisasi : kasus pemecah an persoalan PL yang bertujuan mencari seluruh kemungkinan peme- cahan yg memberikan nilai objektif maksimum.

  4. Contoh-1 : 1. Fungsi Tujuan : Maksimumkan Z = 8 X1 + 6 X2 (Dlm Rp 1.000). 2. Fungsi Pembatas : 2.1. P-Bahan : 4 X1 + 2 X2 ≤ 60 2.2. Penjahitan : 2 X1 + 4 X2 ≤ 48 X1, X2 ≥ 0

  5. Langkah-langkah penyelesaian : 1. Gambarkan semua persamaan linear fungsi pembatas pd grafik dua dimensi. a. 4X1 + 2X2 ≤ 60 X1 = 0, maka 2X2 ≤ 60 X2 ≤ 30 X2 = 0, maka 4X1 ≤ 60 X1 ≤ 15

  6. X2 30 4X1 + 2X2 ≤ 60 X1 0 15

  7. 2. 2X1 + 4X2 ≤ 48 X1 = 0, maka 4X2 ≤ 48 X2 = 12 X2 = 0, maka 2X1 ≤ 48 X1 = 24 X2 2X1 + 4X2 ≤ 48 12 X1 0 24

  8. X2 • Gambar Fungsi Pembatas : 4X1 + 2X2 ≤ 60 2X1 + 4X2 ≤ 48 A B X1 O C

  9. 2. Menggambar Fungsi Tujuan pada grafik dua dimensi. Z = 8 X1 + 6 X2 6 X2 = Z - 8 X1 X2 = Z/6 – 8/6 X1 X2 = Z/6 – 4/3 X1 Δ X2 = 4; Δ X1 = 3 Jika : Δ X2 = 12 maka Δ X1 = 9

  10. X2 Menggambar fungsi tujuan : Z = 8X1 + 6X2 Δ X2 = 12 dan Δ X1 = 9 A 12 B X1 O 9 C ZA

  11. X2 • Gambar Fungsi Tujuan : 4X1 + 2X2 ≤ 60 2X1 + 4X2 ≤ 48 A B X1 O C ZB ZC ZO ZA

  12. Wilayah optimum adalah OABC 1. Titik O : X1 = 0 dan X2 = 0; Jadi Zo = 0 2. Titik A : X1 = 0 dan X2 = 12; Jadi ZA = 8000(0)+6000(12) = 72000 3. Titik C : X1 = 15 dan X2 = 0 Jadi ZC = 8000(15) + 6000(0) = 120000 4. Titik B adalah perpotongan antara fungsi pembatas 1 : 4X1 + 2X2 ≤ 60 dan fungsi pembatas 2 : 2X1 + 4X2 ≤ 48

  13. Potongkan persamaan fungsi pembatas 1 dan persamaan fungsi pembatas 2 : 4X1+2X2 = 60 x 2 8X1+4X2 =120 2X1+4X2 = 48 x 1 2X1+4X2 = 48 ---------------------- - 6X1 = 72 X1 = 12 2(12)+4X2=48 X2=(48-24)/2 = 6 Jadi : Z =8000(12)+6000(6)+0+0 = 132.000

  14. Contoh-2 Suatu perusahaan mengahsilkan 2 barang, yaitu A dan B. Masing-masing barang membutuhkan sumberdaya seperti terlihat pada Tabel berikut.

  15. Disamping itu, menurut ramalan bagian penjualan permintaan barang A tidak akan melebih 4 unit. Tentukan jumlah barang A dan B yang dihasilkan sehingga memberikan laba maksimum bagi perusahaan ! Penyelesaian : Model Program Linear 1. Fungsi Tujuan : Maksimumkan : Z = 4000X1+5000X2

  16. 2. Fungsi Pembatas : 2.1. Bahan Mentah : X1+2X2 ≤ 10 2.2. Buruh : 6X1+6X2 ≤ 36 2.3. Permintan A : X1 ≤ 4 X1, X2 ≥ 0 Metode Aljabar 1. Merubah ketidaksamaan fungsi pemba- tas menjadi persamaan dgn menambah slack variabel (S).

  17. METODE GRAFIK 1. Gambarkan Fungsi Pembatas : 1.1. Fungsi Pembatas : X1+2X2 ≤ 10 X1 = 0, maka X2 ≤ 5 X2 = 0, maka X1 ≤ 10 X2 5 X1 0 10

  18. 1.2. Fungsi Pembatas : 6X1+6X2 ≤ 36 X1 = 0, maka X2 ≤ 6 X2 = 0, maka X1 ≤ 6 X2 6 0 X1 6

  19. X2 X1≤4 1.3. Fungsi Pembatas : X1 ≤ 4 0 X1 4

  20. 2. Menggambar Fungsi Tujuan : Z = 4X1+5X2 atau X2 = Z/X1 – 4/5 X1 Δ X2 = 4; Δ X1 = 5 X2 A B C 0 X1 ZC D Zo ZD ZA ZB

  21. X2 • Metode Grafik X1 ≤ 4 6X1 +6X2 ≤ 36 A B C X1 + 2X2 ≤ 10 O X1 D ZO ZD ZA ZB ZC

  22. Penyelesaian Optimum : 1. Titik O : Zo= 0 2. Titik A : ZA = 4000(0)+5000(5)=25000.- 3. Titik B : X1+2X2 = 10 X1=10-2X2 6X1+6X2=36 6(10-2X2)+6X2=36 X2=4 X1=10-8=2 Z = 4000(2)+5000(4)=28000.- 4. Titik C : X1 = 4 ; 6X1+6X2=36

  23. 6(4)+6X2=36 X2=(36-24)/6=2 ZC = 4000(4)+5000(2)=26000 • Jadi, kesimpulan barang A = 2 unit dan barang B = 4 unit menghasilkan keuntungan maksimum sebesar Rp 28000.-

  24. (2) Kasus Minimisasi : kasus pemecahan masalah program linear yang bertujuan seluruh kemungkinan pemecahan yang memberikan nilai objektif minimum. Contoh : Seorang petani modern menghadapi suatu persoalan sebagai berikut : setiap sapi peliharaan agar supaya sehat harus diberi makanan yang mengandung paling sedikit : 27,21, dan 30 satuan unsur

  25. nutrisi jenis A, B, dan C setiap harinya. Dua jenis makanan M1 dan M2 diberikan kepada sapi peliharaan tersebut. Satu gram makanan jenis M1 mengandung unsur nutrisi jenis A, B, dan C masing-masing sebesar 3,1, dan 1 satuan. Sedangkan satu gram makanan jenis M2 mengandung unsur nutrisi jenis A,B, dan C masing-masing 1,1, dan 2 satuan. Harga satu gram M1 dan M2 masing-masing sebesar Rp40000 dan Rp20000.-

  26. Petani tersebut harus memutuskan apakah membeli satu jenis makanan saja atau kedua-duanya kemudian mencampurnya. Tujuan adalah agar jumlah pengeluaran petani tersebut minimum. a. Merumuskan Tabel Persoalan

  27. b. Model Program Linear 1. Fungsi Tujuan : Minimumkan : Z = 40000X1+20000X2 2. Fungsi Pembatas : 2.1. Nutrisi A : 3X1+ X2 ≥ 27 2.2. Nutrisi B : X1+ X2 ≥ 21 2.3. Nutrisi C : X1+2X2 ≥ 30 X1, X2 ≥ 0

  28. Y A (2). Metode Grafik : 3X1+X2 ≥ 27 B X1+X2 ≥ 21 C X1+2X2 ≥ 30 D X O ZA ZB ZD ZO ZC

  29. Kesimpulan : a. Titik O : ZO = 0 b. Titik A : ZA = 40000(0)+20000(27) = 540000.- c. Titik B : ZB = 40000(3)+20000(18) = 480000.- d. Titik C : ZC = 40000(12)+20000(9) = 660000.- e. Titik D : ZD = 40000(30)+20000(0) = 12000000.-

  30. Jadi : Pengeluaran petani yang minimum jika membeli makanan sapi A = 3 satuan dan makanan sampi B = 12 satuan dengan Zmin=Rp 480.000.-

  31. (3). Kasus-kasus khusus Beberapa kasus khusus selain kasus maksimisasi dan minimisasi adalah kasus solusi optimum ganda dan tidak memiliki solusi yang layak. Contoh : a. Solusi Optimum Ganda 1. Fungsi Tujuan : Maksimumkan Z = 4X1 + 4X2

  32. 2. Fungsi Pembatas : X1 + 2X2 ≤ 10 X1 + 6X2 ≤ 36 X1 ≤ 4 X1, X2 ≥ 0 b. Tidak Memiliki Solusi Layak 1. Fungsi Tujuan : Maksimumkan Z = 5X1 + 3X2

  33. 2. Fungsi Pembatas : 4X1 + 2X2 ≤ 8 X1 ≥ 3 X2 ≥ 7 X1, X2 ≥ 0

More Related