1 / 64

Smart Grid Technology Discussions 2010

Smart Grid Technology Discussions 2010. Date: 2010-September-13. Abstract: Discussion NIST PAP#2 Report Discussion of other industry & standards activities. Documents.

elkan
Download Presentation

Smart Grid Technology Discussions 2010

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Smart Grid Technology Discussions 2010 Date: 2010-September-13 Abstract: Discussion NIST PAP#2 Report Discussion of other industry & standards activities Bruce Kraemer, Marvell

  2. Documents • In the interim until Mentor is back on line, I have created a temporary document sandbox.  Please email me any documents you want to put in the sandbox." • http://griffin.events.ieee.org/docs/sandbox/ Bruce Kraemer, Marvell

  3. Monday Meeting Agenda • Outline of plan for the week & process to generate comments on the content of the NIST PAP#2 report, r5. - 10 min • Bluetooth Smart Energy Initiative – Tom Siep – 20 min • Comment preparation – 80 min • Tuesday meeting plan – 10 min • Other? Bruce Kraemer, Marvell

  4. Smart Grid Meetings to prepare commentson NIST PAP#2 Wireless Report Bruce Kraemer, Marvell

  5. Tuesday Meeting Agenda • Comment preparation – 80 min • Thursday meeting plan – 10 min • Other? Bruce Kraemer, Marvell

  6. Tuesday Eve Meeting Agenda • Comment preparation review link budget– 30 min ? • Thursday meeting plan – 10 min • Other? Bruce Kraemer, Marvell

  7. Thursday am1 Meeting Agenda • Any additional Comment preparation • Link Budget • Feedback from NIST • Bruce,Thank you very much for your input.Section 6 is for the performance analysis of trends and behaviors, ie a mix of sample data and analysis to discuss the findings.Nada • Need to confirm schedule plan (any changes?) • Plan of attack for Section 6 • Telecon schedule Bruce Kraemer, Marvell

  8. NIST LinkCalc • Link Budget Calculator (V 1.24) • http://www.antd.nist.gov/wctg/manet/prd_linkbudgetcalc.html Bruce Kraemer, Marvell

  9. Call for Contributions to Section 6 • Suggested Outline • Factors affecting performance, i.e. reliability, delay, throughput • Channel conditions such as distance, transmitted power, interference, propagation environment • Traffic load • Number of users • Seeking volunteers? Bruce Kraemer, Marvell

  10. Section 6 – Default Suggestions • 6. Findings / Results • Does wireless technology X meet SG-Network requirements • Performance Metrics • Reliability • Latency • Scalability • meets throughput needs • handles the number of devices needed • range • interference immunity • By actor to actor / Link by link which is the best to use • How does its work in urban, sub-urban, rural • How well does it propagate (e.g. walls, basements, vaults, clutter, hills) • scalability over a quantity of end points • Equipment required to operate • Include processing time between actor to actor Bruce Kraemer, Marvell

  11. Smart Grid ad hoc Call Schedule • Call schedule • Call plan/call topics for period leading up to September interim • Wednesdays at 2pm ET has been the pattern • Agree to schedule calls • Convene next sequence beginning Sept 30, R6 should be available • Review NIST schedule • Primary topic will be comments on R6 & generation of input to Section 6 Bruce Kraemer, Marvell

  12. Tuesday Meeting Guidance Situation • Recognize that we are working on a draft document (r5) • We don’t know what NIST will do with our suggestions • There will be another draft for review late September (r6) Suggestion • Concentrate on getting out today a set of “adequate” change suggestions • Use the next round to refine changes and make them “perfect” Bruce Kraemer, Marvell

  13. e.g. Options -2 xxcast Broadcast • Broadcast is a form of message transmission where a message is sent from a single source to all potential receiving nodes. Multicast • Multicast is a form of message transmission where a message is sent from a single source to a subset of all potential receiving nodes. (The mechanism for selecting the members of the subset is not part of this definition.) Unicast • Unicast is a form of message transmission where a message is sent from a single source to a single receiving node. Bruce Kraemer, Marvell

  14. Tuesday work • Skip ahead to slide 14 Bruce Kraemer, Marvell

  15. NIST Report • R5 was posted at: • http://collaborate.nist.gov/twiki-sggrid/pub/SmartGrid/PAP02Wireless/NIST_Priority_Action_Plan_2_r05.pdf Bruce Kraemer, Marvell

  16. July 28, 2010 Draft 0.5 August 4, 2010 Call for Input to Section 6 September 15, 2010 End of draft 0.5 review period September 16, 2010 SGIP face-to-face, St Louis Tentative PAP 2 meeting NIST Timeline September 30, 2010 Release of draft 0.6 October 29, 2010 End of draft 0.6 review period November 4, 2010 OpenSG meeting, Miami Tentative PAP 2 meeting SGIP face-to-face, Chicago PAP 2 meeting December 3, 2010 Release of Version 1 Bruce Kraemer, Marvell

  17. NIST Expectations • Release 0.6 contains mature contents for all sections • Minor changes are expected between release 0.6 and 1.0 to allow for NIST internal review process • Technical contributions in the form comments to current draft and/or new material shall be posted on the twiki and made publicly available • Technical contributions will be processed as they are received up to the end of the review period • Allow time to provide comment resolution and reach consensus prior to the close of the review period. Bruce Kraemer, Marvell

  18. Next NIST PAP 2 meetings • SGIP meeting in St Louis, September 16, 2010 • Is there a need for a PAP 2 meeting? • Co-located with OpenSG meeting, November 4, 2010, Miami FL. • SGIP meeting, December 1-3, 2010, Chicago, IL Bruce Kraemer, Marvell

  19. Teleconference discussion topics for August - September 08 Smart Grid ad hoc calls: • Document 955 r6 • https://mentor.ieee.org/802.11/dcn/10/11-10-0955-06-0000-smart-grid-ad-hoc-summer-2010-plans.ppt Bruce Kraemer, Marvell

  20. Introduction to Smart Energy • Smart Energy Tom Siep Bruce Kraemer, Marvell

  21. NIST PAP#2 Report Comments Bruce Kraemer, Marvell

  22. Comment #01 • Section 4.2.1.3 talks about Coverage Area. It is important to discuss coverage in conjunction with data rates and link margin for example, in order to avoid associations between inconsistent pieces of information, e.g., citing the largest coverage area achievable by a given technology along with the highest data rate achievable by the technology is incorrect – generally the two have a reverse relationship and the highest coverage is achievable at the lowest data rate. • Suggested text change: Agreed to text change: • Add the following text at the end of Section 4.2.1.3: When comparing coverage areas between different technologies, it is important to take into account the link budgets used in the coverage computation. Note that the largest coverage area achievable by a specific technology typically requires transmission at the lowest data rate used by that technology. Bruce Kraemer, Marvell

  23. Comment #02a • Section 4.2.1.4 talks about Mobility. It would be useful to mention the data rates achievable at various mobility levels to avoid assumptions that mobile devices can communicate at the highest data rates used by a specific technology. • Suggested text change: • Add the following text at the end of Section 4.2.1.4: Comparisons between the capabilities of different mobile technologies have to take into account the maximum data rate achievable at each mobility level -- mobile devices may not be able to communicate at the highest available data rates when moving at high speeds. Bruce Kraemer, Marvell

  24. Comment #03 • Section 4.2.1.5 talks about Data Rates. • Suggested text change: Agree in principle. Xxxcast terms need to be defined either here or in Section 2. Also need a description of block tranmission. • Add the following text at the end of Section 4.2.1.5: Additional factors to consider when discussing data rates: • Throughput must be considered in conjunction with packet size, coverage range and rate of mobility (if any). • It is important to distinguish between unicast, multicast and broadcast rates, as they may not be the same for a given wireless technology. • (This text needs some rework ) Throughput depends on medium access scheduling, including the capability to provide block transmissions (whereby multiple data packets can be sent in succession with minimum or no individual medium access operations per packet except before the first packet is sent), and/or block acknowledgements (whereby a single acknowledgement packet can acknowledge multiple preceding data packets). The capability and flexibility to optimize block transmissions and acknowledgements can have a significant effect on GoodPut. • Move this to another section • The use of rate adaptation mechanisms, where the data rate on a link is reduced when the quality of the link degrades and increased otherwise, which (results change to can result) in higher throughput than using a constant data rate. Bruce Kraemer, Marvell

  25. Comment #03a • The use of rate adaptation mechanisms, where the data rate on a link is reduced when the quality of the link degrades and increased otherwise, which may result in a higher throughput than using a constant data rate. • The use of rate adaptation mechanisms, where the data rate on a link is modified when the quality of the link changes. Bruce Kraemer, Marvell

  26. Unicast • From Wikipedia, the free encyclopedia • In computer networking, unicast transmission is the sending of messages to a single network destination identified by a unique address. http://en.wikipedia.org/wiki/Unicast Bruce Kraemer, Marvell

  27. Unicast Proposal Unicast is a form of transmission where a message from a source is sent to a specific associated destination node. Bruce Kraemer, Marvell

  28. Multicast • In computer networking, multicast is the delivery of a message or information to a group of destination computers simultaneously in a single transmission from the source creating copies automatically in other network elements, such as routers, only when the topology of the network requires it. http://en.wikipedia.org/wiki/Multicast Bruce Kraemer, Marvell

  29. Multicast Proposal • Multicast is a form of transmission where a message from a single source is sent simultaneously to a specific set of associated destination nodes. Bruce Kraemer, Marvell

  30. Broadcast • In computing, broadcasting refers to a method of transferring a message to all recipients simultaneously. • In computer networking, broadcasting refers to transmitting a packet that will be received by every device on the network. In practice, the scope of the broadcast is limited to a broadcast domain. Broadcast a message is in contrast to unicast addressing in which a host sends datagrams to another single host identified by a unique IP address. http://en.wikipedia.org/wiki/Broadcasting_(computing) Bruce Kraemer, Marvell

  31. Broadcast Proposal • Broadcast is a form of transmission where a message from a single source is sent simultaneously to all of the associated destination nodes. Bruce Kraemer, Marvell

  32. Broadcast Options • Broadcast is a form of transmission where a message from a single source is sent simultaneously to any destination node. • Broadcast is a form of transmission where a message from a single source is sent simultaneously to all nodes. • Broadcast is a form of transmission where a message from a single source is sent to all destination nodes. • Broadcast is a form of message transmission where a message from a single source is sent to all destination nodes. • Broadcast is a form of message transmission where a message is sent from a single source to all potential receiving nodes. Bruce Kraemer, Marvell

  33. Options -2 xxcast Broadcast • Broadcast is a form of message transmission where a message is sent from a single source to all potential receiving nodes. Multicast • Multicast is a form of message transmission where a message is sent from a single source to a subset of all potential receiving nodes. (The mechanism for selecting the members of the subset is not part of this definition.) Unicast • Unicast is a form of message transmission where a message is sent from a single source is sent to a single receiving node. Bruce Kraemer, Marvell

  34. Comment #04 • Section 4.2.1.6 talks about RF utilization. • Suggested text change: • Add the following text at the end of Section 4.2.1.6: • Agree in principle– needs rewrite to improve clarity. Consider the power level regulations for the different channels used by a particular technology, e.g., some Unlicensed National Information Infrastructure (UNII) channels at 5GHz have lower maximum allowed power levels from the maximum allowed for unlicensed band operation. • Accepted: Consider the impact of Dynamic Frequency Selection (DFS) regulations on the channels used by a particular technology, e.g., certain UNII channels are subject to DFS regulation which requires wireless devices to change channel when they detect the use of radar on their current channel. Bruce Kraemer, Marvell

  35. Comment 04a • Add the following text at the end of Section 4.2.1.6: • Consider the power level regulations for the different channels used by a particular technology. • Consider the impact of Dynamic Frequency Selection (DFS) regulations on the channels used by a particular technology, e.g., certain UNII channels are subject to DFS regulation which requires wireless devices to change channel when they detect the use of radar on their current channel. Bruce Kraemer, Marvell

  36. Comment #05 • Section 4.2.1.7 talks about Data Frames and Packets. It is important to consider frame duration in conjunction with data rate and size of the frame. Also, we need to consider multicast and broadcast frames in addition to unicast frames. • Suggested text change: Agreed • Modify item “a)” in Section 4.2.1.7 as follows: • What is the maximum frame duration for a unicast, multicast and broadcast frame respectively, and what are the corresponding frame size and data rate at which each type of frame was sent? • Modify item “b)” in Section 4.2.1.7 as follows: • What is the maximum packet size that can be sent in one unicast, multicast and broadcast radio frame respectively? • Modify item “c)” in Section 4.2.1.7 as follows: • Does the radio system support segmentation of unicast, multicast and broadcast packets respectively, when the payload size exceeds the capacity of one radio frame? Bruce Kraemer, Marvell

  37. Comment #06 • Section 4.2.2.4 talks about Connection Topologies. The Bus and Ring topology need to be removed, they are not wireless topologies. One way to characterize wireless topologies is as single hop and multi-hop (statically configured or mesh), and wireless links as point-to-point, point-to-multipoint, and omnidirectional. We need to add figures that correspond to the text we end up with. • Suggested text change: Agree in principle. Need to explain differences between single hop, multi-hop and mesh. Also need t explain static configured and dynamically configured. • Remove the Bus and Ring figures, re-label the Star figure as “Point-to-Multipoint Link”, re-label the Mesh figure as “Mesh Network Topology” and replace the current text in Section 4.2.2.4 with the following: Wireless network topologies can be divided into single hop and multi-hop, where a multi-hop topology can be statically configured, or can be dynamic and self-forming, e.g., a mesh. A wireless link can be point-to-point, point-to-multipoint, or omnidirectional. Bruce Kraemer, Marvell

  38. First paragraph from Wikipedia on Mesh networking • Mesh networking is a type of networking wherein each node in the network may act as an independent router, regardless of whether it is connected to another network or not. It allows for continuous connections and reconfiguration around broken or blocked paths by “hopping” from node to node until the destination is reached. A mesh network whose nodes are all connected to each other is a fully connected network. Mesh networks differ from other networks in that the component parts can all connect to each other via multiple hops, and they generally are not mobile. Mesh networks can be seen as one type of ad hoc network. Mobile ad hoc networks (MANET) and mesh networks are therefore closely related, but MANET also have to deal with the problems introduced by the mobility of the nodes. Mesh networks are self-healing: the network can still operate when one node breaks down or a connection goes bad. As a result, the network may typically be very reliable, as there is often more than one path between a source and a destination in the network. Although mostly used in wireless scenarios, this concept is also applicable to wired networks and software interaction. The animation at the right illustrates how wireless mesh networks can self form and self heal. For more animations see History of Wireless Mesh Networking http://en.wikipedia.org/wiki/Mesh_network Bruce Kraemer, Marvell

  39. MESH and Hop Definitions • Proposed PAP2 Guidelines Document Definitions • Hop: The term hop is used to signify a link between a pair of devices that a frame or packet needs to traverse to reach one device from the other. • Single-Hop Network: A single-hop network is one in which devices can only communicate with each other directly, e.g., over a single hop (link), and do not have the capability to forward traffic on each other’s behalf. • Multi-Hop Network: A multi-hop network is one in which devices have the capability to forward traffic on each other’s behalf and can thus communicate along paths composed of multiple hops. Bruce Kraemer, Marvell

  40. Hop Definitions • Proposed PAP2 Guidelines Document Definitions • Hop: The term hop is used to signify a link between a pair of devices that a frame or packet needs to traverse to reach one device from the other. • Single-Hop Network: A single-hop network is one in which devices can only communicate with each other directly, e.g., over a single link (hop), and do not have the capability to forward traffic on each other’s behalf. • Multi-Hop Network: A multi-hop network is one in which devices have the capability to forward traffic on each other’s behalf and can thus communicate along paths composed of multiple links (hops). Bruce Kraemer, Marvell

  41. Configuring • Statically Configured Multi-Hop Network: A multi-hop network can be statically configured, such that each node’s forwarding decisions are dictated by configuration. • Dynamic and Self-Configuring Multi-Hop Network: A multi-hop network can be dynamic and self-configuring, such that network devices have the ability to discover (multi-hop) forwarding paths in the network and make their own forwarding decisions based on various pre-configured constraints and requirements, e.g., lowest delay or highest throughput. These types of networks are typically referred to as ad hoc or mesh networks, the difference between the two being that an ad hoc network is more likely to be disconnected from other networking infrastructure and to include mobile network devices, whereas a mesh network is typically part of the network infrastructure and is less likely to include mobile network devices. Some of the potential advantages of ad hoc and mesh networks are the ability of devices to optimize forwarding decisions based on propagation conditions and interference, automatic re-routing around failed links or devices, and ability to maintain multi-hop connectivity in a network with a dynamically changing topology, e.g., where one, multiple or all devices may be moving. Bruce Kraemer, Marvell

  42. Configuring • Statically Configured Multi-Hop Network: A multi-hop network can be statically configured, such that each node’s forwarding decisions are dictated by configuration. • Dynamic and Self-Configuring Multi-Hop Network: A multi-hop network can be dynamic and self-configuring, such that network devices have the ability to discover (multi-hop) forwarding paths in the network and make their own forwarding decisions based on various pre-configured constraints and requirements, e.g., lowest delay or highest throughput. • These types of networks are typically referred to as ad hoc or mesh networks, the difference between the two being that an ad hoc network is more likely to be disconnected from other networking infrastructure and to include mobile network devices, whereas a mesh network is typically part of the network infrastructure and is less likely to include mobile network devices. • Some of the potential advantages of ad hoc and mesh networks are the ability of devices to optimize forwarding decisions based on propagation conditions and interference, automatic re-routing around failed links or devices, and ability to maintain multi-hop connectivity in a network with a dynamically changing topology, e.g., where one, multiple or all devices may be moving. Bruce Kraemer, Marvell

  43. MESH Definition • Mesh Network: An ad hoc or mesh network is a dynamic self-configuring network composed of devices that can forward traffic on each other’s behalf, have the ability to discover (multi-hop) forwarding paths in the network and make their own forwarding decisions based on various pre-configured constraints and requirements, e.g., lowest delay or highest throughput. • The difference between an ad hoc and a mesh network is that an ad hoc network is more likely to be disconnected from other networking infrastructure and to include mobile network devices, whereas a mesh network is typically part of the network infrastructure • and is less likely to include mobile network devices. Some of the potential advantages of ad hoc and mesh networks are the ability of devices to optimize forwarding decisions based on propagation conditions and interference, automatic re-routing around failed links or devices, and ability to maintain multi-hop connectivity in a network with a dynamically changing topology, e.g., where one, multiple or all devices may be moving. Bruce Kraemer, Marvell

  44. MESH Definition • Mesh Network: A mesh network is a dynamic self-configuring network composed of devices that can forward traffic on each other’s behalf, have the ability to discover (multi-hop) forwarding paths in the network and make their own forwarding decisions based on various pre-configured constraints and requirements, e.g., lowest delay or highest throughput. Bruce Kraemer, Marvell

  45. Defer Ad hoc Definition • Ad hoc Network: An ad hocnetwork is a dynamic self-configuring network composed of devices that can forward traffic on each other’s behalf, have the ability to discover (multi-hop) forwarding paths in the network and make their own forwarding decisions based on various pre-configured constraints and requirements, e.g., lowest delay or highest throughput. • The difference between an ad hoc and a mesh network is that an ad hoc network is more likely to be disconnected from other networking infrastructure and to include mobile network devices, whereas a mesh network is typically part of the network infrastructure • and is less likely to include mobile network devices. Some of the potential advantages of ad hoc and mesh networks are the ability of devices to optimize forwarding decisions based on propagation conditions and interference, automatic re-routing around failed links or devices, and ability to maintain multi-hop connectivity in a network with a dynamically changing topology, e.g., where one, multiple or all devices may be moving. Bruce Kraemer, Marvell

  46. Comment #07 • Section 4.2.2.5 talks about Connection Management. The section needs to mention what aspects of “connection management” can be used to compare different wireless technologies. For example, we can evaluate the latency to join a network, available security mechanisms employed when joining a network, and overhead to join the network (number of control packets exchanged). Perhaps section titles such as “Network Participation Mechanisms” or “Joining the Network” are more descriptive of the content of this section. • Suggested text change: Agree in principle. Add sentence referring to rejoining after link drop. • Add the following text at the end of Section 4.2.2.5: It is important to evaluate the time it takes for a device to join a particular network, and the overhead required to do so, along with the overhead required to maintain membership in the network after the initial admission into the network. Also to be considered is the overhead associated with optimizing connectivity, e.g., in mesh-based topologies. Bruce Kraemer, Marvell

  47. Comment 07a • Add the following text at the end of Section 4.2.2.5: It is important to evaluate the time it takes for a device to join a particular network, and the overhead required to do so, the time and overhead required to rejoin the network when a device becomes disconnected from the network, along with the overhead required to maintain membership in the network after the initial admission into the network. Also to be considered is the overhead associated with optimizing connectivity, e.g., in mesh-based topologies. Bruce Kraemer, Marvell

  48. Comment 07b Add the following text at the end of Section 4.2.2.5: • It is important to evaluate: • the time it takes for a device to join a particular network, and the overhead required to do so • the time and overhead required to rejoin the network when a device becomes disconnected from the network • the overhead required to maintain membership in the network after the initial admission into the network • the overhead associated with optimizing connectivity, e.g., in mesh-based topologies. Bruce Kraemer, Marvell

  49. Comment #08 • Section 4.2.3.2 talks about Location Characterization. It seems like many of the techniques applicable to this section are not technology-specific but implementation-specific and as such can be incorporated across different wireless technologies even if they are not currently incorporated into the products of a specific wireless technology. It would be helpful to make the distinction between technology-specific properties and product-specific properties in the text. • Suggested text change: Agreed • Add the following text at the end of Section 4.2.3.2: It is important to distinguish between technology-specific location characterization mechanisms and those that are applicable across technologies or communication topologies, and can easily be added to products that may not currently support them. Bruce Kraemer, Marvell

  50. Comment #08a • Suggested text change: Agreed • Add the following text at the end of Section 4.2.3.2: It is important to distinguish between technology-specific mechanisms for location characterization and mechanisms that are applicable across technologies or communication topologies, which can easily be added to products that may not currently support them. Bruce Kraemer, Marvell

More Related