1 / 32

Christina Dimopoulou Max-Planck-Institut f ür Kernphysik, Heidelberg

Exploring atomic fragmentation with COLTRIMS (Cold Target Re coil Ion Momentum Spectroscopy). Christina Dimopoulou Max-Planck-Institut f ür Kernphysik, Heidelberg. IPHE, Université de Lausanne, 26.05.2003. Experiment - The “Reaction-Microscope”.

elu
Download Presentation

Christina Dimopoulou Max-Planck-Institut f ür Kernphysik, Heidelberg

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exploring atomic fragmentation with COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, 26.05.2003

  2. Experiment- The “Reaction-Microscope” Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  3. champagne sparkling wine piccolo Momentum Spectroscopy: Principle velocity, angle landing zone (detector) time-of-flight and landing position => initial velocity and angle i.e. initial momentum vector

  4. Recoil Ion Momentum Spectroscopy Reaction Microscope Cold Target: • supersonic atomic jet • molecules • clusters Detectors: • position sensitive • multi-hit Projectile: • single photons • intense lasers • charged particles electrons  ~ meV recoil ions  t;x,y,z) ~ eV E-field B-field

  5. Ion Time-of-flight 1.5 1.0 0.5 -0.5 -1.0 -1.5 0 d a p|| [a.u.] ion trajectory N=11 detector Ar+ Ar+ N=12 Ar++ N=13 Ar2+ +Uo +U 1.8 eV N=14 H2O+ H2+ Ex. Multi-photon ionisation of Ar

  6. Experiment- The “Reaction-Microscope” Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  7. Single Photons . . . Intense Laser Target Jet Ion Detector Laser Electron Detector Ti:Sa Laser photon energy: 1.5 eV (T=2.7 fs) pulse length (FWHM): 30 fs intensity: Imax~1016 W/cm2 repetition rate: 3 kHz

  8. e I  1013 W/cm2 h = 1.56 eV P =E /c  0 electron Ee = N h - Ip , N>10 Pe = - PR Ar1+ ER = Ee/MR Multi-photon Single Ionisation electrons

  9. Ey(t) t0 = 0 t t0 = 45 tunneling P = - P 0 » t0 = 90 ion e Moshammer et al. PRL 2000 e 1 Intense Laser: Single Ionisation 2. Drift momentum pulse I 1015 W/cm2 Ey(t) T=2/=2.7 fs t  =30 fs 1.

  10. Ey(t) Ey(t) Ne2+ Ne2+ Intense Laser : Double Ionisation 3.1015 W/cm2 sequential 1.1015 W/cm2 non-sequential Moshammer et al. PRL 2000 Orders of magnitude difference due to e-e correlation Larochelle et. al J. Phys. B31 (1998)

  11. Ey(t) Ne2+ Double peak structure Time delay Non-sequential Double Ionisation Ne2+ Kuchiev 1987 Schafer et al. 1993

  12. Experiment- The “Reaction-Microscope” Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  13. p i Ne6+ p Ne7+ f p p vP = 0.36 a.u. b~5 a.u. He t p r I 3 1015 W/cm2 t b/ vp 0.3 fs Ion Induced femtosec Fields Example: Electron Capture

  14. Ne6+ f p Ne7+ p p i p Q D p p vP = 0.36 a.u. He1+ Q |pp| p ^ r = p r = - p = Q / v - v /2 p r|| p p r Electron Capture: Precision Spectr.

  15. Electron Capture: Precision Spectr. • excellent resolution: 0.7eV FWHM • excellent precision: 3-100 meV • many states resolved simultaneously • no selection rules capture into n=4

  16. Experiment- The “Reaction-Microscope” Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  17. Auger cascades HCI from HITRAP X-rays E~keV/amu Reaction-Microscope <~~~~~~~~~ HCI Target Studies with Highly Charged Ions t ≈ 1 fs Formation of ”hollow atoms” Questions: • Precision Spectroscopy • Dynamics of formation: • many-electron flux (correlated?) • 3. Rearrangement processes

  18. large area ion detector with hole • multi-hit electron detector (up to 10 e-) • large area photon detectors The HITRAP Reaction Microscope • Increased Acceptance and Q-Value Resolution • Coincident detection of ions, electrons and photons

  19. Experiment- The “Reaction-Microscope” Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fields Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  20. p i Ne6+ p Ne7+ f p p vP = 0.36 a.u. b~5 a.u. He t p r I 3 1015 W/cm2 t b/ vp 0.3 fs Laser Assisted Electron Capture Laser & ion induced fields combined Laser I ~ 1013 W/cm2,~ ns

  21. Q D p p i p p f p p Q |pp| p ^ r = p r = - p = Q / v - v /2 p r|| p p r -0.3 0 0.3 Laser Assisted Electron Capture + pdrift (t0) 1013 W/cm2 Intensity Impact Parameter -03 0 0.3 Ion Longitudinal Momentum Ion Longitudinal Momentum

  22. Q D p p i p p f p p Q |pp| p ^ r = p r = - p = Q / v - v /2 p r|| p p r Probability Impact Parameter Laser Assisted Electron Capture + pdrift (t0) T.Kirchner PRL 2002 1013 W/cm2 Intensity Impact Parameter -03 0 0.3 -03 0 0.3 -0.3 0 0.3 Ion Longitudinal Momentum Ion Longitudinal Momentum

  23. D p p i p Q p f p p Q |pp| p ^ r + pdrift (t0) = p r = - p = Q / v - v /2 p r|| p p r Probability Impact Parameter Laser Assisted Electron Capture T.Kirchner PRL 2002 1013 W/cm2 Intensity Impact Parameter -03 0 0.3 -03 0 0.3 -0.3 0 0.3 Ion Longitudinal Momentum Ion Longitudinal Momentum

  24. Experiment- The “Reaction-Microscope” Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fields Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  25. + + 1 GeV/amu U92+ : =2, vp = 120 a.u. He b=2 a.u. <Te> 40 as I 1020 W/cm2 t b/ ( vp )=0.2 as Ex. Double ionisation of He by 100 MeV/amu C6+ e- Bapat et al. JPB 2000 ~~~~~ He2+ Sub-attosecond Ion Induced Fields Heisenberg’s as microscope “Instantané” of the initial two (many)-electron wave function

  26. Intense relativistic HCI beams at GSI Sub-attosecond Ion Induced Fields Heisenberg’s as microscope

  27. Max-Planck Institut, Heidelberg • R. Moshammer, H. Kollmus, D. Fischer, B. Feuerstein, C. Höhr, • A. Dorn, C.D. Schröter, A. Rudenko, C. Dimopoulou, • K. Zrost, V. Jesus, J. R. Crespo Lopez-Urrutia, • A. Voitkiv, T. Kirchner, J. Ullrich UMR, Rolla GSI, Darmstadt S. Hagmann, R. Mann M. Schulz, R.E. Olson, D. Madison Max-Born Institut, Berlin Navrangpura, India H. Rottke, C. Trump, B. Bapat E. Eremina, W. Sandner

  28. Electron Capture: Precision Spectr.

  29. B-field E-field Helmholtz coils: electrons Ion detector drift Electron detector recoil ions projectile beam supersonic gas-jet Recoil Ion Momentum Spectroscopy

  30. Reaction Microscope d a 1 cm Ar++ detector Ar+ Ar2+ +Uo +U Ar++ Ar+ Ar2+

  31. Ey(t) Ponderomotive potential t0 = 0 t t0 = 45 t0 = 90 Moshammer et al. PRL 2000 Intense Laser: Single Ionisation 2. Drift momentum pulse I 1015 W/cm2 Ey(t) T=2/=2.7 fs t  =30 fs 1.

  32. Ne2+ Rescattering: Dynamics Ey(t) t t0 e2 y(t) e1 e1 Ne1+ Ne2+ time delay

More Related