1 / 10

Dinamikus klaszterközelítés Átlagtér illetve párközelítés kiterjesztése

Dinamikus klaszterközelítés Átlagtér illetve párközelítés kiterjesztése. N játékos egy rácson helyezkedik el (periodikus határfeltétel) szimmetriák: transzlációs, forgatási, tükrözési Az x helyen tartózkodó játékos lehetséges stratégiái (állapotai):.

elwyn
Download Presentation

Dinamikus klaszterközelítés Átlagtér illetve párközelítés kiterjesztése

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dinamikus klaszterközelítés Átlagtér illetve párközelítés kiterjesztése N játékos egy rácson helyezkedik el (periodikus határfeltétel) szimmetriák: transzlációs, forgatási, tükrözési Az x helyen tartózkodó játékos lehetséges stratégiái (állapotai): Az s stratégia valószínűsége minden pontban azonos (az időfüggést nem jelöljük). Egypontos konfiguráció valószínűsége: Kétpontos konfiguráció valószínűsége: n-pontos konfigurációk valószínűsége kompakt fürtön: összesen Qn konfiguráció (a fürt alakja is számít)

  2. Kompatibilitási feltételek normálás: A konfigurációs valószínűségek nem függetlenek, pl., ha n=2, akkor Tetszőleges n-nél: Alakfüggés van, de nem jelöljük az elemzést általában összefüggő kompakt fürtökre korlátozzuk

  3. Kompatibilitási feltételek következményei kevesebb paraméter is elegendő pl., egy- és kétpontos közelítésben, Q=2 esetén: További következmények: 2 paraméterrel jellemezhetünk 6 konfigurációs valószínűséget! hasonlóan jelentős paraméterszám-csökkenés érhető el nagyobb klasztereknél is

  4. Konfigurációs valószínűségek felépítése kisebb klaszterekből Bayes-i közelítés: annak a feltételes vsz-e, hogy x2 pontban s2 van, ha x1-ben s1 A hárompontos lineáris klaszteren: Négypontos (lineáris) klaszteren: Általánosítás n-pontos lineáris klaszterre: Ez a közelítés megőrzi a kompatibilitási feltételt, ha d=1, pontosabban: bármelyik p2(sj,sj+1) reprodukálható.

  5. Grafikus reprezentáció Hárompontos konfig. vsz. felépítése párkonfig. vsz.-ekből: szorzás (osztás) p1(s1)-gyel: tömör (üres) kör s1 helyén szorzás (osztás) p2(s1,s2)-vel: folytonos (szaggatott) vonal s1 és s2 között Általánosítás nagyobb klaszterekre: Az ábrázolás hasznos, kényelmes és áttekinthető

  6. Körbezárási probléma Háromszög-klaszter közelítése párkonfigurációs vsz.-ekkel Három lehetőség: sérül a forg. szimmetria sérül a komp. felt. Javallat: 1/3-as súllyal mindhármat, vagy Kirkwood közelítés: vagy háromszög-közelítés Hasonló gubanc minden térbeli struktúrán pl. 9-pontos kl. konf. vsz. közelítése 4-pontos klaszterekkel: Nincs ilyen nehézség sem az egydimenziós rácson, sem a Bethe rácson. [Általában a „hurokmentes” gráfokon]

  7. A pár-konfigurációs vsz-ek ismeretében meghatározható mennyiségek: - Az s stratégia gyakorisága (hányada) a játékelméleti modellben: - n hosszúságú (lineáris) homogén s domén vsz-e a rendszerben: si=s, i=1, …, n ξ: korrelációs hossz vagy tipikus doménméret - átlagos nyeremény z szomszéd esetén: - más várhatóértékeket is hasonló módon határozhatunk meg. - a számolást nagyméretű konfigurációs vsz-ekre is alapozhatjuk.

  8. Házi feladatok 8.1. Az egydimenziós rácson Q=2-nél igazoljuk, hogy a hárompontos klaszteren nem lehet tükrözési szimmetriasérülés, azaz, pl., de a négypontos klaszteren már lehet, például Milyen típusú konfigurációknál zárhatjuk ki a tükrözési szimmetria sérülését n>4 klasztereken? 8.2. Az egydimenziós rácson Q=3-nál a kompatibilitási feltételek segítségével igazoljuk, hogy Milyen stratégia-eloszlásnak felel meg az az állapot, ahol a fenti valószínűségek értéke:

  9. 8.3. Paraméterezzük a négyzetrács 2x2-es klaszterein Q=2-nél a konfigurációk valószínűségét, ha a rendszer szimmetrikus (tükrözés és elforgatás)! Hány független paraméterrel jellemezhető a valószínűségi eloszlás? 8.4. A párközelítéshez képest hány új paraméter jelenik meg a háromszög-klaszter közelítésben a háromszög- vagy kagome rácson, ha Q=2? 8.5. Határozzuk meg az egydimenziós Q-állapotú rendszerben az fajlagos entrópiát egy- és kétpontos közelítésben az N→∞ határesetben, ha

  10. 8.6. A klaszter-variációs módszerrel kétpontos közelítésben számítsuk ki a félig betöltött, egydimenziós rácsgáz modell páreloszlási valószínűségeit, átlagos energiáját, entrópiáját és szabadenergiáját a T hőmérséklet függvényében a termodinamikai egyensúlyban. Párközelítésben a rendszer energiája a J csatolási állandóval kifejezve: E=NJp2(1,1). Az S entrópia kifejezése a p2(s1,s2) vsz-ek függvényében azonos a 8.5. feladat megoldásával. A klaszter-variációs módszer alkalmazásánál az F=E-TS szabadenergia minimumát kell meghatározni a párkonfigurációs valószínűségek paraméterének [itt q=p2(1,1)] függvényében. Jelen esetben p1(0)=p1(1)=1/2. További megjegyzés: az egydimenziós rendszerben a párközelítés eredménye megegyezik az egzakt eredménnyel.

More Related