1 / 32

Non-LTE studies of A-type supergiants

Non-LTE studies of A-type supergiants. Norbert Przybilla K. Butler (Munich), M. Firnstein & F. Schiller (ex-Bamberg). Intro. The Protagonists evolved progeny of OB main-sequence stars T eff : ~ 8000 ... 13000 K M: ~ 8 ... 40 M 8 L: ~ 10 4 ...10 5.5 L 8 R: ~ 50 ... 400 R 8

erelah
Download Presentation

Non-LTE studies of A-type supergiants

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Non-LTE studies ofA-type supergiants Norbert Przybilla K. Butler (Munich), M. Firnstein & F. Schiller (ex-Bamberg)

  2. Intro The Protagonists • evolved progeny of OB main-sequence stars • Teff: ~ 8000 ... 13000 K • M: ~ 8 ... 40 M8 • L: ~ 104 ...105.5 L8 • R: ~ 50 ... 400 R8 spectroscopy@high-res throughout Local Group A-stars Moscow – 04.06.2013

  3. Intro A-stars Moscow – 04.06.2013 Previous quantitative studies of A-type supergiants Early LTE work Groth (1961), Przybylski (1969), Wolf (1971), Aydin (1972): a Cyg, h Leo Recent LTE work Albayrak (2000), Yuce (2005), Tanriverdi (2013): stellar parameters, elemental abundances (5 objects) Early NLTE work Kudritzki (1973): H+He NLTE atmospheres More recent NLTE studies Venn (1995ab), Venn & Przybilla (2003): stellar parameters, elemental abundances, evolutionary status Takeda (1990ies), Takeda & Takada-Hidai (2000): elemental abundances, evolutionary status Kudritzki et al. (1999): Wind properties, WLR Aufdenberg et al. (2002): stellar parameters (a Cyg) Kudritzki et al. (2003,2008): FGLR

  4. Intro A-stars Moscow – 04.06.2013 Other studies of A-type supergiants Variability Kaufer et al. (1996, 1997): time-series spectroscopy Moravveji et al. (2012): MOST photometry, asteroseismology (b Ori) Interferometry Aufdenberg et al. (2002): radius (a Cyg) Chesneau et al. (2010): extension Ha line-formation region (a Cyg, b Ori) Spectropolarimetry Hubrig et al. (2012): magnetic field in HD92207 Extragalactic studies Multiobject spectroscopy: metallicities, abundance gradients, distance indicators (FGLR), interstellar reddening, DIBs in other galaxies, ... review talk by Miguel Urbaneja

  5. Observations A-stars Moscow – 04.06.2013 High-resolution spectroscopy of Galactic BA-Supergiants Firnstein & Przybilla (2012) High-resolution, high-S/N Echelle spectra: FEROS, UVES, FOCES, CAFE

  6. Diagnostic Problem stellar analyses from interpretation of observation photometry, spectroscopy A-stars Moscow – 04.06.2013 • fundamental stellar parameter: L, M, R • atmospheric parameters: Teff, log g, x, Y, Z, etc. • elemental abundances • quantitative spectroscopy • via model atmospheres

  7. Diagnostics hot supergiants: strong radiation field, low densities non-LTE: non-Local Thermodynamic Equilibrium rate equations, gf-values, line broadening, detailed level-coupling, zillions of atomic cross-sections A-stars Moscow – 04.06.2013 Modelling Approaches usually: LTE: Local Thermodynamic Equilibrium Saha-Boltzmann-Formulae, gf-values, line broadening Limited Tremendous Error non-Limited Tremendous Error

  8. Diagnostics • transfer equation • statistical equilibrium: • radiative rates: • collisional rates: • excitation, ionization, charge exchange, • dielectronic recombination, etc. non-local local (Restricted) non-LTE problem MgII: Przybilla et al. (2001) model atoms ... required for many elements/ions A-stars Moscow – 04.06.2013

  9. Diagnostics A-stars Moscow – 04.06.2013 Atomic data Example: collisional excitation by e--impact • replacing approximations • by experimental or • ab-initio data • Schrödinger equation • LS-coupling: • low-Z Breit-Pauli Hamiltonian • Methods: • R-matrix/CC approximation • MCHF • CCC CII W=1 Allen Formula huge amounts of atomic data: OP/IRON Project & own

  10. Diagnostics NLTE: need for accurate atomic data Przybilla & Butler (2004) H atom: analytical solution except electron collisions: 3-body problem ab-initio data vs. approximations until recently: medium resolution spectroscopy • IR-lines equiv. to Balmer lines as gravity indicators • stellar parameters/FGLR A-stars Moscow – 04.06.2013

  11. Diagnostics Przybilla & Butler (2004) Hd Hg Hb LTE P12 Paschen-Series NLTE: ab-initio improved e--impact excitation x-sections Pg Pb Br10 NLTE: approximate Br12 Brackett-Series Pf24 Brg Pfund-Series a Cyg (A2 Ia) Schiller & Przybilla (2008) NLTE: need for accurate atomic data Przybilla & Butler (2004) H atom: analytical solution except electron collisions: 3-body problem ab-initio data vs. approximations until recently: medium resolution spectroscopy • IR-lines equiv. to Balmer lines as gravity indicators • stellar parameters/FGLR A-stars Moscow – 04.06.2013

  12. Diagnostics niNLTE ___ bi = niLTE Non-LTE effects Przybilla et al. (2006) OI OI Non-LTE departure coefficients FeII reproduction of observed trends: non-LTE line-strengthening non-LTE line-weakening TiII A-stars Moscow – 04.06.2013

  13. Diagnostics complication in IR: amplification of NLTE effects NLTE line source function: hn<<kT A-stars Moscow – 04.06.2013 Complications Przybilla et al. (2006) • Pressure inversion • appears for A-types ~A4 and later • in static and hydrodynamic • atmospheres • extreme sensitivity of line spectra • to small variations of parameters

  14. Firnstein & Przybilla (2012) Diagnostics Przybilla et al. (2006) Przybilla et al. (2000) Firnstein & Przybilla (2012a) fine ruler A-stars Moscow – 04.06.2013 NLTE Diagnostics: Stellar Parameters minimising systematics ! using robust analysis methodology & comprehensive model atoms • ionization equilibria Teff elements: e.g. C I/II, N I/II, O I/II, Mg I/II, Si II/III, S II/III, Fe II/III Δ Teff / Teff ~ 1…2%usually: 5…10% • Stark broadened hydrogen lines log g Δ log g ~ 0.05…0.10 (cgs)usually: 0.2 • microturbulence, helium abundance, metallicity + other constraints, where available: SED’s, near-IR, … • abundances: Dloge ~ 0.05...0.10 dex (1s-stat.) usually: factor ~2 Dloge ~ 0.07...0.12 dex (1s-sys.) usually:??? IAU Symposium 224: The A-Star Puzzle Poprad – July 10, 2004

  15. Diagnostics artifact artifact artifact NLTE/LTE neutral ionized Elemental Abundances Przybilla et al. (2006) • non-LTE: • absolute abundances • reduced uncertainties • Δ log e: • ~ 0.05 - 0.10 dex (1s-stat.) • ~ 0.10 dex (1s-syst.) • reduced systematics • typical uncertainties • in literature: • factor ~2 (1s-stat.) • + unknown syst. errors A-stars Moscow – 04.06.2013

  16. Diagnostics NLTE/LTE neutral ionized A-stars Moscow – 04.06.2013 Elemental Abundances Przybilla et al. (2006) HD87737 (A0 Ib) absolute abundances relative to Cosmic Abundance Standard Nieva & Przybilla (2012) • LTE: abundance pattern? - large uncertainties

  17. Diagnostics NLTE/LTE neutral ionized A-stars Moscow – 04.06.2013 Elemental Abundances Przybilla et al. (2006) HD87737 (A0 Ib) absolute abundances relative to Cosmic Abundance Standard Nieva & Przybilla (2012) no non-LTE abundance “corrections“ • non-LTE: consistency & reduced uncertainties

  18. Diagnostics A-stars Moscow – 04.06.2013 Spectroscopy @ High-res & High-S/N HD92207 (A0 Iae) Przybilla et al. (2006) • several 104 lines: ~30 elements, 60+ ionization stages • complete spectrum synthesis in visual (& near-IR) ~70-90% in NLTE

  19. Results A-stars Moscow – 04.06.2013 Revision of functional relationships Spectral type – Teff relationship Firnstein & Przybilla (2012) Colour - Teff relationship + more

  20. Results Photometric calibrations Firnstein & Przybilla (2012)

  21. Results A-stars Moscow – 04.06.2013 A warning on the use of photometric parameter estimation spectroscopic photometric Firnstein & Przybilla (2012) errors of parameters and abundances can get large > 0.3dex possible

  22. CRIRES spectroscopy A-stars Moscow – 04.06.2013 Benchmark spectroscopy: Galactic A-SGs with CRIRES • CRyogenic high-resolution Infrared • Echelle Spectrograph CRIRES@VLT-UT1 • high resolving power R = l/Dl ≤ 100,000 • wavelength coverage 0.95 to 5.3 mm • ~ 200 settings for full spectral coverage • detector: 4 x 4096 x 512 Aladdin III InSn • Pilot program: 3 A-SGs HD87737 (A0 Ib) • HD111613 (A2 Iabe) • HD92207 (A0 Iae) • - (partial) coverage of J, H, K, L band

  23. CRIRES spectroscopy A-stars Moscow – 04.06.2013 Telluric Line Correction Przybilla et al. (in prep.) • high-resolution: • detailed line profiles • telluric lines resolved • telluric line removal • via modelling: • - radiative transfer • code FASCODE • & HITRAN molecular • database • GDAS atmospheric • profiles HD111613 (A2 Iabe)

  24. CRIRES spectroscopy A-stars Moscow – 04.06.2013 Near-IR Hydrogen Lines Przybilla et al. (in prep.) • high-resolution: • detailed line profiles • telluric lines resolved HD111613 (A2 Iabe)

  25. CRIRES spectroscopy A-stars Moscow – 04.06.2013 Near-IR Hydrogen Lines Przybilla et al. (in prep.) • high-resolution: • detailed line profiles • telluric lines resolved • analysis: • extension of • previous modelling • consistency with visual • strong NLTE effects • + Bra: stellar wind HD111613 (A2 Iabe)

  26. CRIRES spectroscopy Przybilla et al. (in prep.) Near-IR Metal Lines • metal lines in near-IR: • C, N,O, Mg, Si, Fe + He • stellar evolution • galactochemical evolution HD111613 (A2 Iabe) A-stars Moscow – 04.06.2013

  27. CRIRES spectroscopy Przybilla et al. (in prep.) Near-IR Metal Lines • metal lines in near-IR: • C, N,O, Mg, Si, Fe + He • stellar evolution • galactochemical evolution • analysis: • - extension of previous modelling • - strong NLTE effects • - good agreement with visual • but • adjustment of some model atoms • necessary (NLTE amplification) • improved atomic data HD111613 (A2 Iabe) A-stars Moscow – 04.06.2013

  28. Stellar Evolution Nuclear path of the CNO-cycles diagnostic diagram: mass ratios N/C vs. N/O initially CN-cyle: , O const. • for initial (scaled) solar composition • for cosmic abundance standard • X=0.715 Y=0.271Z=0.014 ~4 Przybilla et al. (2010) A-stars Moscow – 04.06.2013

  29. Stellar Evolution A-stars Moscow – 04.06.2013 Mixing of CNO: Our NLTE Data Przybilla et al (2010), Nieva & Przybilla (2012), Firnstein & Przybilla (in prep.) supergiants throughout MW B-MS stars in solar neighbourhood

  30. Stellar Evolution Supergiants more advanced than predicted by models - first dredge up? MS evolution compatible with models A-stars Moscow – 04.06.2013 Mixing vs. Evolutionary Status Data from Przybilla et al (2010), Nieva & Przybilla (2012), Firnstein & Przybilla (in prep.) Tracks: Meynet & Maeder (2003), Maeder & Meynet (2005)

  31. Stellar Evolution A-stars Moscow – 04.06.2013 Asteroseismology + new stellar evolution models Saio et al. (2013) Pulsations post-RSG abundances prae-RSG evolutionary status not clear

  32. Summary A-stars Moscow – 04.06.2013 Summary • using non-LTE modelling and comprehensive analysis techniques • absolute oxygen abundance determinations feasible for BA-SGs • @ high precision and accuracy: • 0.05-0.10 dex (1s statistical uncertainty) • ~0.10 dex (1s systematic uncertainty) • non-LTE effectsat all scales, in particular strong in near-IR • LTE abundance patterns vanish in non-LTE, scaled CAS • evolutionary status (pre-RSG, post-RSG) still unclear

More Related