1 / 22

Alex Bogacz, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc.

Status of Linac and RLAs – Simulations. Alex Bogacz, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Morteza Aslaninejad, Cristian Bontoiu, J ü rgen Pozimski Imperial College Vasiliy Morozov, Old Dominion University. 0.9 GeV. 244 MeV. 146 m. 79 m. 0.6 GeV/pass. 3.6 GeV. 264 m.

farren
Download Presentation

Alex Bogacz, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Status of Linac and RLAs – Simulations Alex Bogacz, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Morteza Aslaninejad, Cristian Bontoiu, Jürgen Pozimski Imperial College Vasiliy Morozov, Old Dominion University IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  2. 0.9 GeV 244 MeV 146 m 79 m 0.6 GeV/pass 3.6 GeV 264 m 12.6 GeV 2 GeV/pass Linac and RLAs – ‘Big picture’ 1st part of this talk 2nd part of this talk • IDS Goals: • Define beamlines/lattices for all components • Resolve physical interferences, beamline crossings etc • Error sensitivity analysis • End-to-end simulation (machine acceptance) • Component count and costing IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  3. RLA Lattice Studies - Status • Presently completed lattices • Linear pre-accelerator – solenoid focusing • 4.5 pass Dogbone RLA × 2 (RLA I + RLA II) • Optimized multi-pass linac optics (bisected - quad profile along the linac) • Droplet return arcs (4) matched to the linacs • Transfer lines between the components – injection chicanes • Droplet arcs crossing – Double achromat Optics design • Chromatic corrections with sextupoles at Spr/Rec junctions • Error analysis for the Arc lattices (proof-or-principle) • Magnet misalignment tolerance – DIMAD Monte Carlo Simulation • Focusing errors tolerance – betatron mismatch sensitivity • Piece-wise end-to-end simulation with OptiM (pre-accelerator + RLA I) IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  4. Muon Acceleration Mini-workshop Feb 2-5, 2010 http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/ IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  5. Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 5 12 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 146 Solenoid Linac (244 -909 MeV) Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc= 150 mm 8 medium cryos 17 MV/m 6 short cryos 15 MV/m 11 long cryos 17 MV/m 2.4 Tesla solenoid 1.4 Tesla solenoid 1.1 Tesla solenoid IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  6. Linac – tracking studies DONE SO FAR: • shielded two-shell solenoid modeled with POISSON • RF cavities modeled with SUPERFISH, COMSOL, & CST • front-to-end lattice for OptiM(solenoids, dipoles, quadrupoles, & sextupoles) • linac lattice tested in MAD-X • beam tracking using GPT • optical match of linac to cooling channel with one solenoid • beam-loading effects evaluated as negligible • standard for exchanging data files proposed IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  7. Solenoid Model (Superfish) outer coil shield inner coil ‘Soft-edge’ Solenoid IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  8. Two-cell cavity (201 MHz) – COMSOL MortezaAslaninejad CristianBontoiu JürgenPozimski IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  9. Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c bx,y = 2.74 m ax,y = -0.356 bg = 2.08 IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  10. Thu Apr 08 13:54:52 2010 OptiM - MAIN: - C:\Working\IDS\PreLinac\Linac_sol.opt 30 30 Size_Y[cm] Size_X[cm] 0 0 0 Ax_bet Ay_bet Ax_disp Ay_disp 146 Linac Optics – Beam envelopes Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc= 150 mm NFMCC Collaboration Meeting, Oxford, MS, January 14, 2010

  11. Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 5 12 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 146 Linac Optics – OptiM vs ELEGANT a = 19.5 cm a = 19.5 cm Yves Roblin IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  12. Longitudinal phase-space tracking MATHCAD OptiM Initial distribution Kevin Beard Alex Bogacz ELEGANT MATLAB Yves Roblin Morteza Aslaninejad IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  13. Cooling Channel – Linac Optics b B|| a IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  14. GPT Particle Tracking in the Linac cooling -> upper linac upper -> middle linac IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  15. Linac and RLAs - ‘field map’ tracking TO DO NEXT: • Include cavity filling effect on accelaration • Get a more accurate initial distribution • Design an improved cooling-to-linac section • Upgrade analytic cavity phasing – check against GPT • Complete linac lattice via tuning solenoids, phasing cavities, & tracking with GPT IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  16. Wed Jun 11 14:08:34 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc2_match.opt Wed Jun 11 13:14:37 2008 OptiM - MAIN: - D:\IDS\Linacs_short\Linac1_fudg.opt 3 15 3 15 BETA_X&Y[m] DISP_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] -3 0 -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 36.9103 0 BETA_X BETA_Y DISP_X DISP_Y 72 Linac-to-Arc – Chromatic Compensation E =1.8 GeV • ‘Matching quads’ are invoked • No 900 phase adv/cell maintained across the ‘junction’ • Chromatic corrections needed – two pairs of sextupoles IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  17. Linac-to-Arc - Chromatic Corrections initial uncorrected two families of sextupoles IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  18. Mirror-symmetric ‘Droplet’ Arc – Optics Tue Jun 10 21:14:41 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc1.opt 3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 130 (bout = bin and aout = -ain , matched to the linacs) E =1.2 GeV 2 cells out transition 2 cells out transition 10 cells in IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  19. Multi-pass FFAG Arc • 2 or more passes through the same arc e.g. 5 GeV and 9 GeV • NS-FFAG arc lattice design • Achromatic basic cell with 90 horizontal phase advance • Automatic matching between inward and outward bending cells • Linear optics understood • Need to incorporate sextupole and higher-order field components to accommodate higher momenta Basic cell example trajectories dispersion Vasiliy Morozov COSY Infinity IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  20. Multi-pass FFAG Arc Vasiliy Morozov simple closing of geometry when using similar cells r = 38.5 meters 300 60 C = 302 meters IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  21. Proposed SDDS Exchange Format http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/SDDS/draft.html • ZGOUBI • ELEGANT • G4beamline • ICOOL • OptiM • COSY-Infinity • MAD-X • GPT • … Kevin Beard IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  22. Summary • Critical components of front-end linac modeled • Initial design of the front-end linac simulated • Design matching sections simulated • RLA arc lattice + chromaticity compensation simulated • Putting the pieces together for end-to-end simulations • Multi-pass (2) FFAG Arcs? IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

More Related