1 / 25

Spectral Properties of Planar Quantum Waveguides with Combined Boundary Conditions

Spectral Properties of Planar Quantum Waveguides with Combined Boundary Conditions. Jan K říž QMath9, Giens 1 3 September 200 4. Collaboration with Jaroslav Dittrich (NPI AS CR , Řež near Prague) and David K rejčiřík (Instituto Superior Tecnico, Lisbon).

gerd
Download Presentation

Spectral Properties of Planar Quantum Waveguides with Combined Boundary Conditions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spectral Properties of Planar Quantum Waveguides with Combined Boundary Conditions Jan Kříž QMath9, Giens 13 September 2004

  2. Collaboration with Jaroslav Dittrich (NPI AS CR, Řež near Prague) and David Krejčiřík (Instituto Superior Tecnico, Lisbon) • J. Dittrich, J. Kříž, Bound states in straight quantum waveguides with combined boundary conditions, J.Math.Phys. 43 (2002), 3892-3915. • J. Dittrich, J. Kříž, Curved planar quantum wires with Dirichlet and Neumann boundary conditions, J.Phys.A: Math.Gen. 35 (2002), L269-L275. • D. Krejčiřík, J. Kříž, On the spectrum of curved quantum waveguides, submitted, available on mp_arc, number 03-265.

  3. Model of quantum waveguide free particle of an effective mass living in nontrivial planar region Wof the tube-like shape Impenetrable walls: suitable boundary condition • Dirichlet b.c. (semiconductor structures) • Neumann b.c. (metallic structures, acoustic or electromagnetic waveguides) • Waveguides with combined Dirichlet and Neumann b.c. on different parts of boundary Mathematical point of view spectrum of -Dacting in L2(W)(putting physical constants equaled to 1)

  4. Hamiltonian • Definition: one-to-one correspondence between the closed, symmetric, semibounded quadratic forms and semibounded self-adjoint operators • Quadratic form Q(y,f) := ( y,f)L2(W), Dom Q := {y W1,2(W) |yD= 0 a.e.} D  W… Dirichlet b.c.

  5. Energy spectrum 1. Nontrivial combination of b.c. in straight strips

  6. Evans, Levitin, Vassiliev, J.Fluid.Mech. 261 (1994), 21-31.

  7. Energy spectrum 1. Nontrivial combination of b.c. in straight strips L  d /d

  8. ess 2d 2), ess 2d 2), Energy spectrum1. Nontrivial combination of b.c. in straight strips -[-L]-1 N [-L] -[-L]-1N[-L]     L (0 , L0]  sdisc= , L  L0 sdisc.   > : sdisc  .

  9. Energy spectrum1. Nontrivial combination of b.c. in straight strips

  10. Energy spectrum1. Nontrivial combination of b.c. in straight strips

  11. Energy spectrum1. Nontrivial combination of b.c. in straight strips L = 1/2

  12. Energy spectrum1. Nontrivial combination of b.c. in straight strips L = 2

  13. Energy spectrum1. Nontrivial combination of b.c. in straight strips L=0.27

  14. Energy spectrum1. Nontrivial combination of b.c. in straight stripslimit case of thin waveguides

  15. Energy spectrum1. Nontrivial combination of b.c. in straight stripslimit case of thin waveguides • Configuration:=  (0,d), =((-,-d){d}) ((d, ) {d}) , I:= (-d,d)N=( {0}) (I{d}) • Operators • -DWQW(f,y) = (f, y )L2(W),Dom QW={yW1,2(W) | y =0} • Dom(-DW) ... can be exactly determined • -DIQI(f,y) = (f, y )L2(I),Dom QI = W01,2(I) Dom(-DI) ={y W2,2(I) | y(-d) = y(d) = 0}

  16. Energy spectrum1. Nontrivial combination of b.c. in straight stripslimit case of thin waveguides • Discrete eigenvaluesli(d), i = 1,2,...,Nd, where -[-L]-1  Nd  -[-L]...eigenvalues of -DW • mi , i ...eigenvalues of -DI • Theorem: N  ,  e >0,  d0 : (d < d0 )  |li(d) -mi| < e,i = 1, ..., N. • PROOF:Kuchment, Zeng, J.Math. Anal.Appl. 258,(2001),671-700 • Lemma1: Rd: Dom QI Dom QW, Rd(f )(x,y) = f (x). • f  Dom QI :

  17. Energy spectrum1. Nontrivial combination of b.c. in straight stripslimit case of thin waveguides • Corollary 1: i = 1, ..., N, li(d) mi . • PROOF: Min-max principle. • WN(W) ...linear span of N lowest eigenvalues of -DW . • Lemma 2: Td: WN(W)  Dom QI , Td(y )(x) = y (x,y)I . for d small enough and y  WN(W): 1. 2. • Corollary 2: i = 1, ..., N, mili(d) (1 + O(d))+ O(d).

  18. Energy spectrum 2. Simplest combination of b.c. in curved strips asymptotically straight strips Exner, Šeba, J.Math.Phys. 30 (1989), 2574-2580. Goldstone, Jaffe, Phys.Rev.B 45 (1992), 14100-14107.

  19. sess=  p24 d2) , ) sess= [ p2 / d2 , ) Energy spectrum2. Simplest combination of b.c. in curved strips sdisc , whenever the strip is curved. The existence of a discrete bound state essentially depends on the direction of the bending.

  20. Energy spectrum2. Simplest combination of b.c. in curved strips sdisc sdisc,if d is small enough sdisc= 

  21. Curved strips - simplest combination of boundary conditions • Configuration space G : 2...C2 - infinite plane curve n = (-G2’, G1’) ... unit normal vector field k = det (G’,G’’)...curvature o:=  (0,d) ... straight strip of the width d  : 22 : {(s,u)  G(s) + u n(s)} W := (Wo)...curved strip along G k:= max {0,k} a := k(s) ds ... bending angle

  22. Curved strips - simplest combination of boundary conditions • Assumptions:Wis not self-intersecting k L(), d ||k+|| < 1.  : Wo W ... C1 – diffeomorphism -1 defines natural coordinates (s,u). Hilbert space L2(W) L2(Wo, (1-u k(s)) ds du) • Hamiltonian: unique s.a. operator H of quadratic form ____ _____ Q(,f) := (Wo (1-u k(s))-1sy sf + (1-u k(s)) uy uf )ds du Dom Q := {y W1,2 (Wo) | y(s,0) = 0 a.e.}

  23. Curved strips - simplest combination of boundary conditions • Essential spectrum: Theorem: lim|s| k(s) = 0 sess(H) = [p/(4d2), ). PROOF: 1. DN – bracketing 2. Generalized Weyl criterion (Deremjian,Durand,Iftimie, Commun. in Parital Differential Equations 23 (1998), no. 1&2, 141-169.

  24. Curved strips - simplest combination of boundary conditions • Discrete spectrum: Theorem: (i) Assume k  0.If one of (a) k L1() and a  0, (b) k-  0 and d is small enough, is satisfied then inf s(H) < p/(4d2). (ii) If k-  0 then inf s(H)  p/(4d2). PROOF: (i) variationally (ii)  y  Dom Q : Q(y, y) - p/(4d2) ||y||2 0. Corollary: Assume lim|s| k(s) = 0. Then (i) Hhas an isolated eigenvalue. (ii) sdisc(H)is empty.

  25. Conclusions • Comparison with known results • Dirichlet b.c. bound state for curved strips • Neumann b.c. discrete spectrum is empty • Combined b.c. existence of bound states depends on combination of b.c. and curvature of a strip • Open problems • more complicated combinations of b.c. • higher dimensions • more general b.c. • nature of the essential spectrum

More Related