1 / 32

密度汎関数理論による計算核データ

密度汎関数理論による計算核データ. Takashi NAKATSUKASA Theoretical Nuclear Physics Laboratory RIKEN Nishina Center. DFT (Hohenberg-Kohn) → Static properties, EOS TDDFT (Runge-Gross) → Response, reaction. 2009.3.16-18 50 th 新学術領域 A03 WS. 自己紹介. 中務 孝(なかつかさ たかし) 所属 理研・仁科センター・中務原子核理論研究室 研究分野

giles
Download Presentation

密度汎関数理論による計算核データ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 密度汎関数理論による計算核データ Takashi NAKATSUKASA Theoretical Nuclear Physics Laboratory RIKEN Nishina Center • DFT (Hohenberg-Kohn) → Static properties, EOS • TDDFT (Runge-Gross) → Response, reaction 2009.3.16-18 50th新学術領域A03 WS

  2. 自己紹介 • 中務 孝(なかつかさ たかし) • 所属 • 理研・仁科センター・中務原子核理論研究室 • 研究分野 • 高スピン・超変形状態における核構造 • 時間依存密度汎関数理論を用いた原子核・原子・分子・クラスター等の量子ダイナミクス計算 • 大振幅集団運動理論 • 実時間計算による3体量子反応計算 • HP • http://ribf.riken.jp/~nakatsuk/

  3. One-to-one Correspondence Density Minimum-energy state External potential Ground state v-representative density

  4. The following variation leads to all the ground-state properties. In principle, any physical quantity of the ground state should be a functional of density. Variation with respect to many-body wave functions ↓ Variation with respect to one-body density ↓ Physical quantity

  5. One-to-one Correspondence Time-dependent state starting from the initial state Time-dependent density External potential TD state v-representative density

  6. The universal density functional exists, and the variational principle determines the time evolution. From the first theorem, we have ρ(r,t) ↔Ψ(t). Thus, the variation of the following function determines ρ(r,t) . The universal functional is determined. v-representative density is assumed.

  7. TD Kohn-Sham Scheme Real interacting system TD state TD density Virtual non-interacting system TD state TD density

  8. Basic equations Time-dep. Schroedinger eq. Time-dep. Kohn-Sham eq. dx/dt = Ax Energy resolution ΔE〜ћ/T All energies Boundary Condition Approximate boundary condition Easy for complex systems Basic equations Time-indep. Schroedinger eq. Static Kohn-Sham eq. Ax=ax(Eigenvalue problem) Ax=b (Linear equation) Energy resolution ΔE〜0 A single energy point Boundary condition Exact scattering boundary condition is possible Difficult for complex systems Energy Domain Time Domain

  9. How to incorporate scattering boundary conditions ? • It is automatic in real time ! • Absorbing boundary condition

  10. Potential scattering problem For spherically symmetric potential Phase shift

  11. Time-dependent picture Scattering wave Time-dependent scattering wave (Initial wave packet) (Propagation) Projection on E :

  12. Boundary Condition Absorbing boundary condition (ABC) Absorb all outgoing waves outside the interacting region How is this justified? Finite time period up to T Time evolution can stop when all the outgoing waves are absorbed.

  13. s-wave nuclear potential absorbing potential

  14. 3D lattice space calculationSkyrme-TDDFT Mostly the functional is local in density →Appropriate for coordinate-space representation Kinetic energy, current densities, etc. are estimated with the finite difference method

  15. Skyrme TDDFT in real space Time-dependent Kohn-Sham equation 3D space is discretized in lattice Single-particle orbital: N: Number of particles Mr: Number of mesh points Mt: Number of time slices y [ fm ] Spatial mesh size is about 1 fm. Time step is about 0.2 fm/c Nakatsukasa, Yabana, Phys. Rev. C71 (2005) 024301 X [ fm ]

  16. Real-time calculation of response functions • Weak instantaneous external perturbation • Calculate time evolution of • Fourier transform to energy domain ω [ MeV ]

  17. Nuclear photo-absorptioncross section(IV-GDR) 4He Cross section [ Mb ] Skyrme functional with the SGII parameter set Γ=1 MeV 0 100 50 Ex [ MeV ]

  18. 12C 14C 10 20 30 40 Ex [ MeV ] 10 20 30 40 Ex [ MeV ]

  19. 18O 16O Prolate 10 30 20 40 Ex [ MeV ]

  20. 26Mg 24Mg Triaxial Prolate 10 20 30 40 10 20 30 40 Ex [ MeV ] Ex [ MeV ]

  21. 28Si 30Si Oblate Oblate 10 20 30 40 Ex [ MeV ] 10 20 30 40 Ex [ MeV ]

  22. 32S 34S Prolate Oblate 10 20 30 40 10 20 30 40 Ex [ MeV ] Ex [ MeV ]

  23. 40Ar Oblate 40 20 30 10 Ex [ MeV ]

  24. 44Ca Prolate 48Ca 40Ca 10 20 30 Ex [ MeV ] 10 20 30 40 Ex [ MeV ] 10 20 30 40 Ex [ MeV ]

  25. Cal. vs. Exp.

  26. Electric dipole strengths Z SkM* Rbox= 15 fm G = 1 MeV Numerical calculations by T.Inakura (Univ. of Tsukuba) N

  27. Peak splitting by deformation 3D H.O. model Bohr-Mottelson, text book.

  28. Centroid energy of IVGDR O Fe Cr C He Ne Mg Be Si Si Ar Ca Ti

  29. PDR: impact on the r-process S. Goriely, Phys. Lett. B436, 10. GDR (phenom.) GDR+pygmy (microscopic)

  30. Low-energy strength

  31. Low-lying strengths S Mg Si Ar Be Ne Ca C O Ti He Cr Fe Low-energy strengths quickly rise up beyond N=14, 28

  32. Summary • What DFT/TDDFT can do: • Systematic calculations for all nuclei including those far from the stability line • Nuclear matter, neutron matter, inhomogeneous nuclear matter • Computational Nuclear Data for photonuclear cross section • Description of large amplitude dynamics, such as fission

More Related