1 / 30

TERMODINÁMICAQUÍMICA

TERMODINÁMICAQUÍMICA. Es la parte de la Química que estudia los intercambios energéticos que acompañan a los procesos físicos y químicos. 1° principio. La energía se convierte, se almacena, no se crea ni se destruye. luciérnaga. mamífero. E química. E química. E térmica. E lumínica.

jabir
Download Presentation

TERMODINÁMICAQUÍMICA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TERMODINÁMICAQUÍMICA Es la parte de la Química que estudia los intercambios energéticos que acompañan a los procesos físicos y químicos.

  2. 1° principio La energía se convierte, se almacena, no se crea ni se destruye luciérnaga mamífero E química E química E térmica E lumínica E cinética  Er =  Ep

  3. calor Flujo de energía entre el sistema el entorno Se produce por el movimiento vibratorio de las moléculas y se transfiere de un cuerpo a otro. Se representa con la letra Q. Unidades 1 J = 0,24 cal 1 cal = 4,16 J 1 Kcal = 1000 cal

  4. CALOR ESPECIFICO Expresa la cantidad de calor que se de suministras a 1 g de materia para elevar en 1°C su temperatura Q__ [J.g-1K-1] ce= m. t P =1 atm P =1 atm t = 20 °C

  5. El calor de reacción se mide en un calorímetro Q cedido = Q absorbido Investigar su funcionamiento

  6. TERMOQUÍMICA Rama de la termodinámica que estudia específicamente la absorción y liberación de calor que acompaña a una reacción química

  7. E t E t Reacciones químicas Exotérmicas (Q < 0) y (T > 0) Endotérmicas (Q > 0) y (T < 0)

  8. VARIABLES DE ESTADO Son magnitudes que pueden variar a lo largo de un proceso FUNCIONES DE ESTADO Son variables de estado que tienen un valor único para cada estado del sistema. Su variación sólo depende del estado inicial y final y no del camino desarrollado. Son funciones de estado: Presión, temperatura, energía interna, entalpía.

  9. Entalpía • (del prefijo en y del griego "enthalpos“ calentar) • Magnitud de termodinámica simbolizada con la letra H • H = Hf - Hi • Se expresa en joule, kcal, BTU (sistema anglo). • Representa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico o la cantidad de energía que tal sistema puede intercambiar con su entorno. • Propiedad extensiva • Depende de la temperatura.

  10. Entalpía estándar Es el incremento entálpico de una reacción en la cual, tanto reactivos como productos están en condiciones estándar (P = 1 atm; T = 298 K = 25 ºC; concentración de sustancias disueltas = 1 M). Se expresa como H0y se expresa en J/mol. H0 = H0p - H0r entalpía estándar: de formación, de combustión, de neutralización.

  11. ENTALPÍA DE FORMACIÓN La entalpía normal de formación de la sustancia simple es cero H0 reacción=H0 fp - H0 fr Calculo CH4(g) + 2 O2(g)CO2(g) + 2 H2O(l) H0fCH4(g)= – 74,9 kJ.mol-1 H0fCO2(g)= – 394 kJ .mol-1 H0fH2O(g)= – 241,8 kJ .mol-1 H0 reac =H0 f CO2(g) + 2H0 f H2O(l)- (H0 f CH4(g) + 2  H0f O2 (g))

  12. Ecuaciones termoquímicas Se expresan tanto los reactivos como los productos indicando entre paréntesis su estado físico, y a continuación la variación energética expresada como H0. CH4(g) + 2 O2(g)CO2(g) + 2 H2O(l) H0= - 890 kJH2(g) + ½ O2(g) H2O(g); H0 = –241,4 kJ H depende del número de moles que se forman o producen. Por tanto, si se ajusta poniendo coeficientes dobles, habrá que multiplicar H0 por 2: 2 H2(g) + O2(g)  2 H2O(g) H0 = 2 . (–241,4 kJ)

  13. PROCESO ENDOTÉRMICO ENTALPIA ENERGIA REACTIVOS Calor absorbido por el sistema H > 0 y Q < 0 PRODUCTOS PROCESO EXOTÉRMICO ENTALPIA ENERGIA REACTIVOS Calor cedido por el sistema H < 0 y Q > 0 PRODUCTOS

  14. Ley de Lavoisier-Laplace (1780) El calor desarrollado en la formación de una sustancia a partir de las sustancias simples es igual al calor que la misma absorbe cuando se descompone. H0 R directa= -  H0 R inversa H2 (g) + ½ O2 (g) → H2O (g) ∆H °f = -241,60 Kj.mol-1 H2O (g) → H2 (g) + ½ O2(g) ∆H ° = +241,60 kJ.mol-1

  15. DH = ? Ley de Hess (1840) H es función de estado. Por tanto, si una ecuación química se puede expresar como combinación lineal de otras, podremos igualmente calcular DH de la reacción global combinando los DH de cada una de las reacciones. El calor liberado a presión o volumen constante en una reacción química dada es una constante independientemente del número de etapas en que se realiza el proceso químico DH = -393.5 kJ (1) DH = -110.5 kJ DH = +283 kJ (2) (3) DH 1 C CO2 DH 3 DH 2 CO

  16. Dadas las reacciones: H2(g) + ½ O2(g) ¾  H2O(g) DH10 = –241,8 kJ H2(g) + ½ O2(g) ¾  H2O(l) DH20 = –285,8 kJ calcular la entalpía de vaporización del agua en condiciones estándar. La reacción d vaporización es: H2O(l) H2O(g)DH03 = ?

  17. H2(g) + ½ O2(g) H H10 = – 241,8 kJ H20 = – 285,8 kJ H2O(g) H30 = 44 kJ H2O(l) Esquema de la ley de Hess

  18. ENTALPÍA DE ENLACE • “Es la energía necesaria para romper un mol de un enlace de una sustancia en estado gaseoso”. • En el caso de moléculas diatómicas con un solo enlace, se corresponde con la energía necesaria para disociar • 1mol de dicha sustancia en los átomos que la constituyen. • Para moléculas poliatómicas, la energía de enlace se toma como el valor medio necesario para romper cada uno de los enlaces iguales. • A—B(g) A(g) + B(g)H = Eenlace= Ee • H2(g) 2 H(g)H = 436 kJ • Es positiva (es necesario aportar energía al sistema) • Se mide en kJ/mol.

  19. Cálculo de energías de enlace Calcular la energía del enlace H‑Cl en el cloruro de hidrógeno HCl(g)  H(g) + Cl(g)  H0 = ? Conociendo ½ H2(g) + ½ Cl2(g)  HCl(g)  Hf0(HCl) = –92,3 kJH2(g)  2H(g) Ee(H2) = 436,0 kJCl2(g)  2Cl(g) Ee (Cl2) = 243,4 kJ Aplicando la ley de Hess  H0= – (–92,3 kJ) + ½ .(436,0 kJ) + ½ . (243,4 kJ) = 432,0 kJ

  20. ENTROPÍA (S) Es una medida del desorden del sistema que sí puede medirse y tabularse. Es función de estado ideada por Rudolf Clausius. Aumenta al ir quitando restricciones. Se expresa en J.mol –1.K–1 fusión evaporación S sólido< S líquido S líquido< S gas T1 T2 disolución S st + sv < S sc calentamiento S T1< S T2

  21. entorno entorno calor calor sistema sistema energía energía Proceso exotérmico Aumenta la entropía Proceso endotérmico Disminuye la entropía

  22. En una reacción química: Calculo de S0 para: 3 H2(g) + N2(g)  2 NH3(g) S0 = 2.192,3 J.K‑1 –(3 mol.130,6 J.mol‑1.K‑1 + 191,5 J.K‑1) - 198,7J. K‑1

  23. 2° principio “En cualquier proceso espontáneo la entropía total del universo tiende a aumentar siempre”. A veces el sistema pierde entropía (se ordena) espontáneamente. El entorno se desordena.

  24. 3° principio “La entropía de cualquier sustancia a 0 K es igual a 0” (máximo orden). En procesos reversibles y a t cte se puede calcular S de un sistema como: y si el proceso químico se produce a P cte S0 (entropía molar estándar) se mide en J.mol–1.K–1. Sreacciónse mide en J x K–1.

  25. E LIBRE DE GIBBS (G) E LIBRE O ENTALPÍA LIBRE Energía liberada en los procesos bioquímicos disponible para realizar trabajo de algún tipo G es una función de estado En procesos a T constante se define como: G = H – T x S Por tanto: En condiciones estándar:  G0 =  H0 – T .  S0

  26. Reactivos Productos G < 0 G > 0 Productos Reactivos T, P = ctes. T, P = ctes. Reacción espontánea Reacción no espontánea

  27. H < 0S > 0 H > 0S > 0 S Espontánea a todas las temperaturas Espontánea a temperaturas altas H H < 0S < 0 H > 0S < 0 Espontánea a temperaturas bajas No Espontánea a cualquier temperatura

  28. PROCESOS EXERGÓNICOS ENDERGÓNICOS Si G° < 0 E productos < E reactivos Si G° > 0 E productos > E reactivos R  P +- ENERGÍA LIBRE ESPONTANEO R  P -+ ENERGÍA LIBRE NO ESPONTANEO

More Related