1 / 91

Mass Market Pricing

Mass Market Pricing. How to price to markets with large numbers of consumers. Looking forward . Concept of mass market demand Relationship between revenue and demand Profit maximising price levels Concept of elasticity Innovative pricing. Playing games with consumers.

jaden
Download Presentation

Mass Market Pricing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mass Market Pricing How to price to markets with large numbers of consumers

  2. Looking forward ... • Concept of mass market demand • Relationship between revenue and demand • Profit maximising price levels • Concept of elasticity • Innovative pricing

  3. Playing games with consumers (High Margin, Low Consumer Surplus) Buy Consumer Not ($0, $0) Firm Choose Price (same for all) (Low Margin, High Consumer Surplus) Buy Consumer Not ($0, $0)

  4. Roll back Few sales with high margins Firm Choose Price (same for all) Lots of sales with low margins

  5. Posted prices versus negotiation • In mass markets, only price-posting may be feasible  It’s like making a take-it-or-leave-it offer! • Consumers whose WTP > p purchase from you • If all consumers’ WTPs equal, can extract all the surplus • But, if WTPs are different, same p can’t extract all the surplus

  6. When is price-posting reasonable? • Price haggling too costly relative to value of product • Large numbers of customers  bargaining is inefficient • Information requirements too demanding • Do you know buyer’s WTP, in a big anonymous market? • Markets are perfectly competitive • Bargaining not an issue anyway • Price-posting should be efficient • Usually, firms post (set) prices

  7. Puzzle: Luxury Boxes • Among the many decisions made by sports stadium designers is the number of luxury boxes to build • Suppose that, for a particular stadium under construction, luxury boxes will be sold outright to local businesses and can be constructed at a cost of $300,000 apiece. The stadium designer plans to build 25 boxes and expects, at this number, to sell each for $1 million, for a net profit of $700,000 x 25 = $17.5m. • An associate asserts that this is crazy. Since the box can be built for $300,000 and sold for around $1m apiece, building only 25 leaves money on the table, even if a small price reduction is needed if more are built. • Is the associate correct? What if the price to sell 26 is $950,000?

  8. Demand curves • In mass markets, relevant consumer information summarised by a demand curve • A demand curve identifies how many units of product sell at any posted price • The market demand curve is derived from the WTPs of all potential consumers

  9. Numerical Example • 1,000 potential buyers (only interested in a single unit each). Have different WTP ranging from $0 to $999 • Monopoly seller with constant per-unit cost of $200, • Sufficient capacity to supply everyone • Question: what quantity maximises monopolist profit?

  10. Pooled pricing: “one price fits all” • Assume same price charged to everyone • This is called “pooled” pricing • Reasonable in markets with resale and arbitrage • Customers cannot pay different prices • Otherwise, ones with low price can re-sell (at profit) to others • Later, we relax this assumption • The monopolist faces a tradeoff • Prices can be increased, • But only at the expense of lower sales volume (and, visa versa)

  11. What quantity do you choose? • You have a monopoly in this market • But, can you do whatever you want? • For example, can you sell 800 units at a price of $700? • NO • You can sell 800 units at $200 per unit • Or you can price at $700, and sell 300 units • You can choose price OR quantity, but not both! • Quantity choices imply prices • Price choices imply quantities • Pick one or the other(we’ll assume you choose quantity)

  12. Changes in total revenue (TR) • Consider TR as you increase quantity 1 unit at a time • To sell 1 unit, price = $999, TR = $999 • To sell 2 units, price = $998, TR = $998*2 = $1,996 • Notice that, going from 1 unit to 2 units • You have to drop price, which reduces what you get on unit 1 • You were getting $999 • Now you get $998 • But, you get to sell an additional unit at $998 • Dropping price, you lose $1 TR on unit 1 but gain $998 on unit 2 • The net effect is an increase in TR of $1,996 – $999 = +$997 • As quantity increases 1 unit at a time • You lose more and more TR from lower prices on previous units • You gain less and less on the additional unit sold • At some point, the losses exceed the gains!

  13. Graphically: TR from 4 to 5 units The change in TR going from 4 to 5 units is $991 = 995 – 4 To sell 4 units, price = $996 To sell 5 units, price = $995 P = $996 P = $995 Lose $1 per unit on 4 units TR = area of rectangle = 996*4 = 3984 Gain$995on5th unit

  14. Output and Revenue over the range

  15. Marginal revenue • The marginal revenue (MR) of the nth unit is the change in total revenue induced by going from the (n – 1)th unit • In our example Here, WTP is low ($600) and the lost revenue on previous units required to get the sale is large ($399) – net effect $201

  16. MR = $1 MR = – $1 MR = – $3 MR = $3 Graphically MR = change in TR • The marginal revenue of the 500th unit is $1 • The marginal revenue of the 502th unit is – $3

  17. Total cost (TC) versus marginal cost (MC) • Costs can be analysed in exactly the same way • The MC of the nth unit is the change in TC induced by moving production from (n – 1) units to n units • If you supply 100 units, MC = additional cost of supplying 100 instead of 99 • In this example, each additional unit costs $200 MC = $200 for any level of production

  18. Decision rule: MR = MC • Monopolist should produce as long as doing so is profitable • The monopolist wants to continue to expand sales up to the point where the last unit sold adds just enough TR to offset its effect on TC • Obviously, if the overall effect on TR does not offset the overall effect on TC, don’t produce it! • Profit is maximised by producing 1 unit less than the first unit at which MR – MC < 0

  19. Maximising Profit • Marginal Profit = (Revenue from another unit) - (cost of another unit) = Marginal Revenue - Marginal Cost • When should monopolist supply one more unit? • Whenever the marginal profit is positive • That is, until marginal profit just-above or equal to 0 Produce so long as MR  MC!

  20. Stopping rule for our example? • Each additional unit yields less incremental revenue • But each additional unit costs $200 • Each additional unit increases your total costs by $200 • Monopolist has constant marginal cost of $200 • If you earn more than $200 in revenue from increasing output by one more unit, do it! • If you earn less than $200, don’t!  Stop when Marginal Revenue is $200

  21. A Snapshot MR – MC goes negative here Stop here –1 +1

  22. This can also be solved graphically Profit maximising price Point where MR = MC

  23. Restricting supply • Motive for restricting supply, under bargaining: = reducing the bargaining power of buyers • Motive for restricting supply, under posted pricing = capturing more value from buyers with high WTP

  24. Marginal Thinking Very powerful: right way to approach any decision in which • You can make choices in small increments • Each increment brings less benefit Look at the last increment: is it worth it? • Should I study 8 or 9 hours, today? • Should I eat another spoonful of ice cream? Marginal thinking, for the firm: Should I produce one more unit?

  25. Calculus “shortcut” • Working through these calculations using the brute-force approach (i.e., unit-by-unit) is tedious, time-consuming and prone to error • We can get very good approximations using calculus • Cost: learn appropriate calculus rules • Benefit: huge reduction in time spent working unit-by-unit cases • For those who remember their calculus, cost = 0 • To proceed, we need to make some simplifying assumptions

  26. A necessary assumption • To use calculus, must assume price-quantity relationship is “smooth” • That is, must assume the relationship • P = 1000 – Q • holds for all quantities – even non-integer amounts • The equation above, called the inversedemand curve, describes price as a function of quantity • Demand is actually “lumpy” • At P = $999.00, sell 1 units • At P = $998.50, sell 1 unit! P = 1000 – Q • In large markets, it is simpler (and close enough)to assume smooth demand • At P = $999.00, sell 1 units • At P = $998.50, sell 1.5 units

  27. Demand & inverse demand curves • The equation describing price as a function of quantityis called the inversedemand curve • The sister equation, describing quantity as a function of price, is called the demand curve • If we wish to treat quantity as the choice variable (we do), use inverse demand curve • Key difference between lumpy and smooth demand: • Tiny change in quantity tiny change in price • Indeed, changes can be infinitesimal • When quantities are in the millions, increasing demand one unit is close to an infinitesimal change • It may help to imagine the product is something divisible into arbitrary quantities, like petrol P = 1000 – Q

  28. $250,000 Total Revenue(smooth version) Smooth TR curve Once we assume price is a smooth function of quantity, TR is also a smooth function of quantity • TR = Price x Quantity = PQ • So, substitute (1000 – Q) in for price (from inverse demand equation) to get TR as a function of quantity only • TR = (1000 – Q)Q = 1000Q – Q2 1000Q – Q2

  29. $250,000 $1 $249,999 1 unit Marginal revenue of 500th unit MR of 500th unit = change in TR, 499 to 500 units = $1 NOTE: 1 = slope of the line through these points on the TR curve (slope = “rise over run”) But, with smooth TR, quantity increments can be much smaller than 1 unit … … and, this is useful! TotalRevenue

  30. Maxima of smooth functions The slope of a curve at a point is its instantaneous rate of change at that point(e.g., the change in TR for a minuscule change in quantity) $250,000 Notice anything special about this line? $249,999 FACT: The maximum of a function occurs at the point where its slope = 0 FACT: The instantaneous rate of change in TR at a given quantity is the slope of the line tangent to the TR curve at that quantity TotalRevenue

  31. Calculus: the management summary • The derivative of a curve at a particular point is the slope of the curve at that point • To use calculus, you need to know the rule for finding the derivative • Calculus knowledge for Man Ec • If y is a function of x, the “derivative of y with respect to x,” denoted y/ x, is the slope of the function – the rate at which y changes with x • The only calculus rule you ever need (in this class) is that curves of the form where a, b and c are constants (may be positive, zero, or negative) • Have derivatives of the form • So, plug a number in for x to determine the slope of y(x) at that value of x

  32. Why calculus is useful TR = PQ = 1000Q - Q 2 • To find the slope at any Q, write down the derivative using the “only rule you will ever need” • This tells you the slope of the TR curve for any value of Q • Total revenue hits its max when the slope = 0

  33. MR and MC with smooth functions • MR at a specific Q is equal to the value of the derivative at the quantity • From before, • E.g., MR at Q = 300 is 1000 – 2*300 = 400 • The same idea applies to costs • TC = 200Q, so, using the “only rule you will ever need” • MC at Q = 300 is 200 • In this case, marginal costs are constant (the same at any level of production)

  34. Firm objective: maximise profit • Now, let’s apply the procedure to find maximum profit (what the monopolist really cares about!) • Monopolist wishes to choose optimum Q • Profit = TR – TC = (1000Q – Q2) – 200Q = 800Q – Q2 • Apply the calculus rule to get • Calculate where the slope equals 0 Notice: same as the answerobtained using brute-force

  35. Graphically Same principle as before Profit = 1000Q – Q2 Q*

  36. This can be stated as a “marginal rule” • Marginal profit = 800 – 2Q = (1000 – 2Q) – 200 • In other words, marginal profit = MR – MC • MR = 1000 – 2Q • MC = 200 • To maximise profit, set MR = MC • At the ideal output, Q*: 1000 - 2Q* = 200 or Q* = 400 • To find ideal price, substitute Q* into the inverse demand function: P* = 1000 – Q* = $600.

  37. Exercise: marginal cost • Same demand curve as before, but now the cost of production is increasing: Total Cost = 200Q + Q2. • What is the cost of producing 30 units? 31 units? What is the marginal cost of the 31st unit? • Calculate Marginal Cost, using derivatives. Is your answer for the marginal cost of the 31st unit approximately correct? • How much does the monopolist choose to produce? • Now suppose that you can sell as much as you want to on the US market, for $900 apiece, but demand in the Australian market is (1000 – P). What do you do?

  38. Why split profits into MR and MC? • Marginal analysis is a powerful tool, beyond the case of one factory producing for one market • If selling in two markets: • Equalise the MRs • Why? Imagine you sell a fixed quantity (say 180) • If MR higher in AU, do better by moving one unit from US to AU • This gradually pushes MR down in Australia. • Now choose total quantity: set MR = MC • Double-check that you want to sell in both markets!

  39. Similar: plant production levels • Assume 2 factories, 1 in Melbourne and 1 in Geelong: Total Cost in Factory M = 200QM Total Cost in Factory G = 150QG + QG2 • Same demand curve as before (can only sell in AU) • How much do you produce in each factory? • How about if the total cost in Factory G = 300QG + QG2?

  40. Solution: same idea as before The marginal revenue and marginal cost equations (for each plant) are: Set MC = MR in both plants, solve for optimal quantities (2 eqs, 2 unknowns): When the marginal cost in factory G is 300 + 2QG

  41. Elasticity A convenient measure of sensitivity for use in pricing

  42. Your demand curve in ...the REAL world! • Algebraic analysis is useful for building general intuition • But not for setting prices in the real world • Usually, you don’t know the whole of your demand curve • You do know at least one point on your demand curve = demand at the current price • You can experiment with slightly higher prices and slightly lower prices, to see how demand changes • If you also know your marginal cost, that’s enough to figure out if you should move your price up or down

  43. Elasticity • In determining Q & P, it is important to know how sensitive demand is to price changes. • If it is relatively insensitive, then by raising price the monopolist does not exclude many buyers • If it is relatively sensitive, raising price can exclude many buyers • The measure of how sensitive a demand function is to a change in price = “elasticity” • Prices are higher in markets with less sensitive demand (“less elastic”) • In our example: AU market more inelastic than US • Price higher in Australia

  44. Perfectly Elastic Demand Price Demand Quantity

  45. Perfectly Inelastic Demand Price Demand Quantity

  46. Calculating Elasticity • Price elasticity of demand is the percentage change in quantity demanded divided by a given percentage change in price • More often we use the point elasticity of demand = elasticity for a “minuscule” percentage change in price (derivative of quantity with respect to price, times price divided by quantity)

  47. Some Properties of Elasticity • e is a negative number: e.g., if 10% increase in price of oil decreases quantity by 20%, e = – 2 • “More elastic” means “Bigger in absolute value” e.g., if eUS= – 2 and eAU= – 10, AU demand is more elastic • Unit-Free Measure • you can compare elasticities among different goods • Is oil more price sensitive than butter, at their current prices? • Elasticity vs. Slope • These are not the same thing • Slope is P/Q

  48. Some Terminology

  49. Estimated Price Elasticities Elasticities calculated at current market prices

  50. Accounting for Differences • Degree of Substitutability • Temporary vs. Permanent Price Changes • Long-run vs. Short-run elasticity

More Related