1 / 30

最深层次的物质状态-夸克物质 庄鹏飞 ( zhuangpf@mail.tsinghua ) ● 物质的第五态

最深层次的物质状态-夸克物质 庄鹏飞 ( zhuangpf@mail.tsinghua.edu.cn ) ● 物质的第五态 ● QCD 超导与超流 ● 相对论重离子碰撞 中国科学技术大学, 2012,06,08. 物质科学包含物质的结构和状态 最深层次的结构 : 夸克 问题 : 看不见的夸克 , 质量起源 , 真空结构 真空不知道,动动真空怎么样? 最深层次的 状态 :? 熟悉的物质三态 : 固态 , 液态 , 气态

jafari
Download Presentation

最深层次的物质状态-夸克物质 庄鹏飞 ( zhuangpf@mail.tsinghua ) ● 物质的第五态

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 最深层次的物质状态-夸克物质 庄鹏飞(zhuangpf@mail.tsinghua.edu.cn) ● 物质的第五态 ● QCD超导与超流 ● 相对论重离子碰撞 中国科学技术大学,2012,06,08

  2. 物质科学包含物质的结构和状态 最深层次的结构:夸克 问题: 看不见的夸克,质量起源,真空结构 真空不知道,动动真空怎么样? 最深层次的状态:? 熟悉的物质三态: 固态,液态,气态 第四态:原子弹爆炸后产生大块的电磁等离子体 猜测: 是否存在由夸克和胶子组成的色等离子体(QGP)? 2004 诺贝尔物理奖 H. David Politzer Frank Wilczek David J. Gross 2

  3. 研究夸克物质的意义 李政道: In order to study the question of ‘vacuum’, we must turn to a different direction: we should investigate some ‘bulk’ phenomena by distributing high energy over a relatively large volume.”--------------- Rev. Mod. Phys. 47, 267(1975) from 1897 to present: to comprehend the largest, we need only understand the smallest. from present to 21st century: to know the smallest, we need also the largest! 3

  4. 如何产生夸克物质 温度密度效应 —>波函数重叠 —> 最深层次物质形态 夸克胶子等离子体(QGP) 相变:体系对称性质的改变 QCD Phase Transitions: * deconfinement * chiral restoration * color superconductivity * pion superfluidity * BCS-BEC crossover ...... 4

  5. superconductivity and superfluidity at high density 夸克物质是多学科的交叉领域 粒子物理,核物理,凝聚态物理,宇宙学,天体物理,…… related to early universe related to compact stars related to relativistic heavy ion collisions 5 清华科技园园标

  6. 高温强耦合夸克物质理论: Lattice QCD 胶子自相互作用导致跑动耦合常数:高能弱耦合,低能强耦合! 极高温高密可以用微扰QCD,但如何处理强耦合导致的相变?Lattice QCD ! a strongly coupled quark-gluon plasma even at extremely high temperature !

  7. 高密强耦合夸克物质理论:QCD有效模型 有限重子数密度时Lattice QCD有技术困难,尚无精确结果。 Lattice QCD初步结果 大Nc极限下的猜测 Temperature Effect: vacuum excitation Density Effect: vacuum condensation BCS-BEC crossover is a way to understand the running coupling in QCD 7

  8. 色对称性自发破缺-色超导 由BCS理论,在QED凝聚态中,两个电子通过交换光子是排斥相互作用,吸引相互作用是通过交换集体激发模式-声子来实现的 (低温超导)。Cooper对的形成自发破缺了电磁规范对称性,光子获得了质量。 Frank Wilczek(2004诺贝尔奖): 色超导研究的开创者之一 夸克的色味结构导致丰富的色超导相图 第一项在交换初态或末态的两个夸克色指标时是反对称的,吸引相互作用。在单胶子交换的层次就使得两个夸克可以配对,有Diquark凝聚,形成色超导 (高温超导)。由于色对称性自发破缺,胶子获得质量。

  9. 色电中性的无能隙色超导态 黄梅,何联毅,金猛,赵维勤,庄:2003-2012 稳定的超导态必须是(电,色)荷中性的: 粒子数的差别引起费米面的差别,使得配对的两个费米子不在同一个费米面上,导致Breached Pairing 色超导态,奇怪的中间温度超导态,解决办法之一是引入有总动量的LOFF态。 考虑色电中性条件后,无能隙色超导迅速成为QCD相变研究的一个热点。我们的相关论文被引用1000多次。

  10. 同位旋对称性自发破缺-Pion超流 何联毅,姜寅,毛施君,夏涛,金猛,庄:2005-2012 ●the Nambu-Jona-Lasinio (NJL) model inspired by the BCS t theory describes well the chiral and color condensate. ●we introduced the pion superfluid in the NJL model . Nambu 2008诺贝尔奖 Goldstone mode Pion superfluid phase diagram BEC BCS meson spectra function

  11. 相对论重离子碰撞是在实验室实现夸克胶子等离子体的唯一可能方式相对论重离子碰撞是在实验室实现夸克胶子等离子体的唯一可能方式 LHC Pb+Pb@√s = 5.5A TeV RHIC Au+Au@√s = 200A GeV FAIRU+U@Elab = 40A GeV CSRU+U@Elab = 0.6AGeV

  12. RHIC

  13. LHC ! LHC ! LHC ! searching for the quark-gluon plasma through heavy ion collisions at ALICE, ATLAS and CMS !

  14. A Grand Opportunity ●RHIC and LHC are making little bang like the big bang. ●studying properties on the microseconds-old universe that cannot be addressed by any telescope and satellite. ●The Liquid Quark-Gluon Plasma shares common features with condensed matter, cold atoms and black holes.

  15. 如何知道在重离子碰撞中产生了QGP ?QGP只能是重离子碰撞的中间态,即使在RHIC和LHC产生了QGP,也不能在末态直接观测到,只能通过携带QGP信号的末态观测量来判断。 QGP的信号: Jet quenching: 喷注在热密物质中损失能量 Collective flow: 体系的膨胀会产生集体流Strong fluctuations: 在QCD临界点附近 Quarkonium Production:热密物质中有Debye屏蔽Electromagnetic Signals: 电磁信号是最干净的信号Strangeness enhancement: QGP中奇异夸克成对产生

  16. RHIC发现了什么? Jet quenching • STAR NCQ-scaling Large v2 • models Jet quenching J/Ψ suppression

  17. J/psi Production in a Full Tansport Model 朱相雷,刘云朋,周凯,陈保义,许怒,庄 2006-2012 relativistic hydrodynamics for QGP evolution + transport equation for J/psi motion + QCD equation of state 17

  18. J/ψ Yield at SPS, RHIC and LHC The Jpsi Yields at SPS, RHIC and LHC Have Similar Behavior ! Is There a Jpsi Observable Which Is Sensitive to the Hot Medium? • 62 GeV

  19. Transverse Momentum Distribution ! Data and Our Model Prediction 19

  20. A Full Transport Approach for Quarkonia in HIC 朱相雷,刘云朋,周凯,陈保义,许怒,庄 2006-2012 ● QGPhydrodynamics + equation of state (ideal gas or lattice simulation) ●quarkoniumtransport equations α: suppression β: regeneration ● analytic solution both initial production and regeneration suffer from screening ! ●initial production , including CNM.

  21. Dissociation Cross Section ●gluon dissociation cross section calculated by OPE (Bhanot, Peskin,1999): ●at finite temperature, we use the classical relation is calculated through the Schroedinger equation ● J/Ψdissociation rate ●regeneration rate is determined by the detailed balance

  22. RHIC的实验结果验证了我们的理论预言 QM2011France

  23. RHIC LHC QM2011 LHC将测量我们预言的非零椭圆流(ALICE很快将有结果)

  24. NN2012USA LHC的实验结果验证了我们的理论预言

  25. NN2012USA LHC的实验结果验证了我们的理论预言

  26. NN2012USA LHC的实验结果验证了我们的理论预言

  27. NN2012USA LHC的实验结果验证了我们的理论预言

  28. Averaged Transverse Momentum We are waiting for the data from LHC QM2012USA

  29. 结论与展望 ●Lattice QCD计算表明相变是一个Crossover,温度为170 MeV。 ●RHIC的相对论重离子碰撞实验发现了产生强耦合夸克胶子等离子体的信号。 ●人们希望在LHC最后抓住夸克胶子等离子体。 ●高密QCD超流与超导的理论研究还有困难,和致密星体与中能重离子碰撞的联系尚不清楚,但表现出与凝聚态和Cold Atom Gas相似的性质。 革命尚未成功,同志仍需努力!

  30. 要想认识最小的,需要认识最大的 李政道 Columbia University,New York,NY 10027 大事物由小事物组成 甚至是更小的。 要想认识最小的 我们也需要知道最大的。 一切都取决于真空 无论何时何地。 微观的事物怎能 与宏观相分离? 真空其实是一种凝聚 破坏了和谐。 如此我们方可洞穿 不对称中的对称。 Large things are made of small And even smaller. To know the smallest We need also the largest All lie in vacuum Everywhen and everywhere. How can the micro Be separate from the macro? Let vacuum be a condensate Violating harmony We can then penetrate Through asymmetry into symmetry

More Related