1 / 60

Identified Company (CompositeX) to manufacture Custom Composite Pressure Vessel

Composite Pressure Vessel (Chalice Concept). Nitrous Oxide Vapor. Liquid Nitrous Oxide. Identified Company (CompositeX) to manufacture Custom Composite Pressure Vessel Working pressure 1000psi Holds 8 kg Nitrous Oxide 700 cubic inch volume HDPE lined 1.4 lbs.

jberke
Download Presentation

Identified Company (CompositeX) to manufacture Custom Composite Pressure Vessel

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Composite Pressure Vessel(Chalice Concept) Nitrous Oxide Vapor Liquid Nitrous Oxide • Identified Company (CompositeX) to manufacture Custom Composite Pressure Vessel • Working pressure 1000psi • Holds 8 kg Nitrous Oxide • 700 cubic inch volume • HDPE lined • 1.4 lbs

  2. Composite Pressure Vessel(Chalice Concept) Helium Gas Liquid Nitrous Oxide

  3. Composite Pressure Vessel(Chalice Concept) • Ideal gas law used to model helium pressure • p=m*R*T/V • Verified from pressure/ temperature data that Helium will remain gaseous • Compressibility factor ~1, so ideal gas assumption valid • Tank weights listed estimated from quote of 700ci=1.4 lbs • Also includes weight of Helium (case dependent)

  4. Aluminum/Titanium Comparison

  5. Mass Calculation

  6. Mass CalculationChalice Design, 7075-T6 Al240mm OD, 1.75mm Thickness, FS 1.25

  7. Mass CalculationEmbedded Outer Shell Design, 7075-T6 Al 180mm OD, 61mm ID, 1.3mm Thickness, FS 1.25

  8. Mass CalculationEmbedded Inner Shell Design, Grade 5 Titanium61mm OD, 0.5mm Thickness

  9. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Model Geometry Inner Shell (fuel grain housing) Outer radius: 2.40” (~61mm) Inner radius: 2.36” (~60mm) Height: 21.46” (~545 m) Mat’l: Aluminum 7075 T6 Outer Shell (NOS/rocket housing) Outer radius: 1.75” + 0.5 mm (0.03225 m) Inner radius: 1.25” (0.03175 m) Height: 1.5” (0.0381 m) Mat’l: Al 7075 T6 with Composite over-wrap Composite: IM7 Carbon (fiber) / PEEK (matrix)

  10. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Material Properties Carbon/PEEK Composite (Modeled as Isotropic) Density: 1600 kg/m3 Longitudinal Mod., E1: 71.7e9 Pa Transverse Mod., E2: 10.2e9 Pa Poisson’s Ratio, v12: 0.30 Shear Modulus, G12: 5.7e9 Al 7075-T6 (Modeled as Isotropic) Density: 2810 kg/m3 Longitudinal Mod., E1: 71.7e9 Pa Poisson’s Ratio, v12: 0.33 PEEK (matrix) Density: 1376 kg/m3 IM7 Carbon Fiber (12,000 filaments) (Modeled as Orthotropic) Density: 1780 kg/m3 Longitudinal Mod., E1: 278e9 Pa Poisson’s Ratio, v12: 0.20

  11. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 1: Outer Shell of Imbedded Fuel Grain Design (Meshed Elements – 8node93)

  12. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 2: Outer Shell of Imbedded Fuel Grain Design: Plot Results  Contour Plot  Element Solution  Stresses  von Mises stress

  13. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 3: Outer Shell of Imbedded Fuel Grain Design: Plot Results  Deformed Shape  Def + undeformed

  14. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 4: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Rotated view)

  15. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 5: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints - Front View)

  16. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (w/ composite) Figure 6: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints - Side View)

  17. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 7: Inner Shell of Imbedded Fuel Grain Design (Meshed Elements – 8node93)

  18. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 8: Inner Shell of Imbedded Fuel Grain Design: Plot Results  Contour Plot  Element Solution  Stresses  von Mises stress

  19. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 9: Inner Shell of Imbedded Fuel Grain Design: Plot Results  Deformed Shape  Def + undeformed

  20. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 10: Inner Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Rotated view)

  21. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 11: Inner Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Front view)

  22. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Inner Shell (All Aluminum) Figure 12: Inner Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Side view)

  23. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 13: Outer Shell of Imbedded Fuel Grain Design (Meshed Elements – 8node93)

  24. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 14: Outer Shell of Imbedded Fuel Grain Design: Plot Results  Contour Plot  Element Solution  Stresses  von Mises stress

  25. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 15: Outer Shell of Imbedded Fuel Grain Design: Plot Results  Deformed Shape  Def + undeformed

  26. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 16: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints – Rotated view)

  27. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 17: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints - Front View)

  28. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Outer Shell (Aluminum only) Figure 18: Outer Shell of Imbedded Fuel Grain Design: (Pressure & Constraints - Side View)

  29. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 19: ELEMENT LAYERS

  30. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 20: LAYER ORIENTATION AND THICKNESS

  31. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 21: LAYER ORIENTATION AND THICKNESS continued…

  32. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 22: COMPOSITE PROPERTIES

  33. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 23: ALUMINUM PROPERTIES

  34. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 24: FAILURE CRITERIA FOR COMPOSITES

  35. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 25: INVERSE TSAI-WU STRENGTH RATIO INDEX

  36. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 26: X-COMP OF STRESS

  37. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 27: Y-COMP OF STRESS

  38. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 28: X-COMP OF STRESS

  39. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 29: SHEAR XY-DIR

  40. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 30: SHEAR YZ-DIR

  41. Inner and Outer Shell ANSYS Stress Modeling(Embedded Fuel Grain Concept) Figure 31: SHEAR XZ-DIR

  42. Top and Bottom Fixture Solidworks Stress Model(Embedded Fuel Grain Concept) Model Geometry Geometry is the same for both the top and bottom fixture Mass = 0.520526 kg Volume = 0.00018 m3

  43. Top and Bottom Fixture Solidworks Stress Model(Embedded Fuel Grain Concept) 1000 psi 1000 psi Material Properties, Loading, and Meshing Al 7075-T6 Density: 2810 kg/m3 Modulus of Elasticity: 71.7 GPa Shear Modulus: 28 GPa Meshing done with Solidworks and Cosmos finite element analysis Elements: 25306 Nodes: 49277

  44. Top and Bottom Fixture Solidworks Stress Model(Embedded Fuel Grain Concept) Factor of Safety Results

  45. Top and Bottom Fixture Solidworks Stress Model(Embedded Fuel Grain Concept) Discussion of Results • This model demonstrates how the top and bottom fixtures will hold up against the required loads. The loading is purely theoretical at this point, but the model is made, and all that needs to be done is substitute the correct loads for the theoretical ones.

  46. External Shell Solidworks Stress Model(Embedded Fuel Grain Concept) Model Geometry Mass = 1.63918 kg Volume = 0.00058 m3

  47. External Shell Solidworks Stress Model(Embedded Fuel Grain Concept) Material Properties, Loading, and Meshing Al 7075-T6 Density: 2810 kg/m3 Modulus of Elasticity: 71.7 GPa Shear Modulus: 28 GPa 1000 psi Meshing done with Solidworks and Cosmos finite element analysis Elements: 43804 Nodes: 87448

  48. External Shell Solidworks Stress Model(Embedded Fuel Grain Concept) Factor of Safety Results

  49. External Shell Solidworks Stress Model(Embedded Fuel Grain Concept) Discussion of Results

  50. Internal Shell Solidworks Stress Model(Embedded Fuel Grain Concept) Model Geometry Mass = 5.64597 kg Volume = 0.002 m3

More Related