1 / 33

Hypernuclear Physics at J-PARC

Hypernuclear Physics at J-PARC. Dept. of Physics, Tohoku University H. Tamura. 1. Introduction 2. S=-1 2.1 g spectroscopy of hypernuclei 2.2 n-rich L hypernuclei 3. S=-2 3.1 X hypernuclear spectroscopy 3.2 LL hypernuclei 4. Experimental apparatus 5. Other plans 6. Summary.

kalila
Download Presentation

Hypernuclear Physics at J-PARC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hypernuclear Physics at J-PARC Dept. of Physics, Tohoku University H. Tamura

  2. 1.Introduction 2. S=-1 2.1g spectroscopy of hypernuclei 2.2n-rich L hypernuclei 3. S=-2 3.1X hypernuclear spectroscopy 3.2LL hypernuclei 4. Experimental apparatus 5. Other plans 6. Summary Contents

  3. 1. Introduction

  4. Nu ~ Nd ~ Ns Strangeness in neutron stars ( r > 3 - 4 r0 ) Strange hadronic matter (A → ∞) Strangeness LL, X Hypernuclei Z L, S Hypernuclei -2 N n-rich nuclei -1 Lower density 0 World of matter made of u, d, s quarks “Stable” Higher density 3-dimensional nuclear chart by M. Kaneta inspired by HYP06 conference poster

  5. Motivation of Hypernuclear Physics • Extending “Nuclear Chart” in 3D space • Hyperons stabilize nuclei -> extend n/p drip lines • Toward multi-strange systems -> high density nuclear matter • Baryon-Baryon interaction • Unified picture of baryon-baryon interactions • Understand short-range nuclear forces in terms of quarks • Necessary to understand high density nuclear matter and strangeness mixing in neutron stars • Impurity effects in nuclear structure • Changes of size/shape, symmetry, cluster/shell structure,.. • Nuclear medium effects of baryons • Probed by hyperons free from Pauli effect

  6. PRC 64 (2001) 044302 J-PARC will answer -> UL = - 30 MeV(c.f. UN = -50 MeV) What we know about YN, YY interactions Established SuggestedUnknown • LN Attractive (~ 2/3 of NN force) <- LZ L-single particle orbit data Very small LS force, small spin-spin/ tensor forces <- LZ p-shell g-ray data etc. LN-SN coupling force? <- s-shell L hypernuclei p-wave force?Charge symmetry breaking (Lp≠Ln)?? • SN Strong isospin dependence (attractive for T=1/2,S=0) <- 4SHe Strongly repulsive in average?<- 28Si (p-,K+) spectrum How large is the repulsive (T=3/2,S=1) channel? • XN Weakly attractive??<- 12C (K-,K+) spectrum Isospin dependence??? • LL Weakly attractive <- 6LLHe LL-XN-SS coupling force ??? • LS, SS, XL, XS, XX Unknown at all ???

  7. r0 n star ストレンジネス・クォーク星の可能性 南冠座の天体 RX J1856.5-3754 カシオペア座の天体3C58 西暦1181年に起きた超新星爆発のときにできたパルサーと考えられている。その温度が予想よりも低い。 [Credit: NASA/SAO/CXC/J.Drake et al.] 直径が12km弱しかなく、中性子星より密度が高い。 Credit: NASA/SAO/CXC/P.Slane et al. High density matter in neutron star core Large neutron Fermi energy -> Hyperons appear Baryon fraction: very sensitive to YN, YY interactions -> maximum mass, cooling speed Hypernuclear data -> realistic calculations possible - We need XN int., LL int., KN int. (K condensate?), LN p-wave force, NNN and YNN force, … 帆座超新星残骸 かに座超新星残骸 存在比率 密度

  8. 2. S=-1

  9. Present Status of L Hypernuclear Spectroscopy (2006) Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

  10. 2.1 S=-1g spectroscopy of L hypernuclei

  11. Hypernuclear g-ray data since 1998 (p+,K+ g) at KEK-PS (K-, p- g) at BNL-AGS using Ge array “Hyperball” NaI array (13LC) “Table of Hyper-Isotopes” EPJ A33 (2007) 243 PRC 77 (2008) 054315

  12. D =∫V (r) |u(r)|2 r2dr, r = r -r sL pN • Two-body LN effective interaction D SL SN T p-shell: 5 radial integrals for sL pN w.f. s Well know from UL = - 30 MeV - V LN spin-dependent interactions • Low-lying levels of L hypernuclei Level spacing: Linear combination of D, SL, SN, T Millener’s approach

  13. DE = -0.04D + 2.46SL+ 0.99T DE = 1.29D + 2.17SL - 2.38T 3/2+ 3/2- 2+ 1- 43 keV 7/2+ 5/2+ 3+ 471 keV 5/2+ -310 keV DE = 0.70SN 3/2+ 1+ 0+ 1/2+ 1- 692 keV 1/2- 6Li 1/2+ 26 keV 8Be 15O 0- DE = 1.44 D + 0.05SL- 0.27T DE = - 0.38 D+ 1.38SL+ 7.85T 7LLi 9LBe 16LO Determination of the spin-dependent force parameters PRC 73 (’06) 012501 D ,SL, T: consistent D = 0.4 MeV SN = - 0.4 MeV SL = - 0.01 MeV T = 0.03 MeV PRL 86 (’00) 5963 PRL 88 (’02) 082501 PRL 93 (2004) 232501 -> Test and improve baryon-baryon interaction models (meson exchange/ quark models)

  14. (K-,p- ) r (sL-dN) > r (sL-pN) sensitive to interaction range and exchanging meson mass ?? Very large CSB !? Not theoretically understood. BL(MeV) E13 (Tamura et al.)g-ray spectroscopy of light L hypernuclei (K-,p-) reaction (pK=1.5 GeV/c) at K1.8 line using SKS + Hyperball-J (developed for higher counting rate) • Further study of LN interaction • LN-SN coupling and three body force • Charge symmetry breaking (Ln≠Lp?) • Radial dependence (Interaction range) 4LHe, 10LB, 11LB, 19LF • gL in a nucleus from spin-flip B(M1) 7LLi

  15. eh mq= 2mqc ~100% Doppler Shift Attenuation Method : gc in s-orbit g factor of L in nucleus mL in nucleus -> medium effect of baryons mq : Const. quark mass • Direct measurement extremely difficult (tL ~ 0.1-- 0.2 ns) • B(M1) of L-spin-flip M1 transition -> gL reduction of mass -> enhancement of m?? applied to “hypernuclear shrinkage” in 7LLi from B(E2) : PRL 86 (’01)1982 -> Precise B(M1) measurement (~5%) of 7LLiat J-PARC

  16. 2.2 S=-1 n-rich hypernuclei

  17. Search for n-rich hypernucleiby (Stopped K-, p+) 9LHe 6LH 12LBe 7LH 16LC Only upper limit Background from Sigma decay

  18. L-S coherent coupling Akaishi et al., PRL 84 (2000) 3539 Neutron-rich hypernucleus (KEK E521, K6+SKS) Physics Interest • L-S coherent coupling -> more bound? • Behavior of n-halo with a L • Production mechanism? • 2-step charge exch. • (p-p->p0n, p0p->K+L etc.) • S- admixture • (p- p->S- K+, S- p->Ln) p- p p -> L n K+ pp~1.2 GeV/c 10B (p-, K+) 10LLi 11.1±1.9 nb/sr Almost no background Saha et al., PRL 94 (2005) 052502 First data on n-rich hypernucleus

  19. E10 (Sakaguchi et al.)Study on Neutron-Rich Hypernuclei NCX: (K-,p-), (p+,K+) reaction Produce neutron-rich hypernuclei by the double charge-exchange (DCX) reaction L-hypernuclei SCX: (e,e’K+), (K-,p0), (p-,K0) reaction DCX: (K-,p+),(p-,K+)reaction NCX ordinary nuclei SCX this study DCX Akaishi: Glue-like role of L (BL=4.4 MeV) + LNN coherent coupling ( +1.4 MeV) 6LH p 5H n n n L n p n n n n unbound “Hyperheavy hydrogen”: deeply bound

  20. 3.1 S= -2 X-hypernuclei

  21. -> Take a similar spectrum for (K-,K+) reaction E05 (Nagae et al.)X-hypernuclear spectroscopy by (K-,K+) K- p -> X- K+ 1st priority • First spectroscopic study of S=-2 systems in (K-,K+) reaction • First step to multi-strangeness baryon systems • XN Interaction • Attractive or repulsive? How large? <- X-nuclear potential depth • Isospin dependence ? <- Different targets • XN-LL coupling force? • <- Xp→LLconversionwidth <- X and LL hypernuclear mixing states

  22. Previous data on XN interaction(BNL AGS E855) PK=1.8 GeV/c ΔM=9.9 MeV/c2 (FWHM) for p(K−,K+)Ξ− −20 < EΞ < 0 MeV 89±14 nb/sr θ< 8° 42± 5 nb/sr θ<14° VΞ = -14 MeV?

  23. Expected 12C (K-,K+) 12XBe Spectrum ΔEmeas. = 3 MeVFWHM pX VΞ= -20MeV VΞ= -14MeV [counts/0.5MeV] sX • Precision: • Peak Position: 0.1 - 0.3 MeV • Width: 0.2 - 1 MeV -BΞ [MeV]

  24. 3.2 S=-2LL hypernuclei (and X- atoms)

  25. p L n DBLL =1.01±0.20 +0.18 MeV - 0.11 A golden event of LL Hypernuclei Nagara event The first well-identified double L hypernucleus event “Triple magic nucleus” p(0s)2 n(0s)2L(0s)2 produced from K- p -> X- K+ reaction Mass -> Interaction betweenL-L is weekly attractive. Takahashi et al., PRL 87 (2001) 212502 KEK E377 Emulsion-counter hybrid method ~103 stopped X- PRL 87 (2001) 212502

  26. E03 (Tanida et al.)X- atomic X rays by (K-,K+)X- on Fe target “LL”-> S-p decay event E07 (Nakazawa, Imai, Tamura et al.)S=-2 Systems with Emulsion-Counter Hybrid Method Measure tracks by counters • Ten times more events of LL hypernuclei >104 stopped X-, ~102LL hypernuclei • Details of LL interaction strength • L-L correlation (H dibaryon-like state) • in nucleus from “LL”-> S-p decay • Measure X- -atomic X-rays with Hyperball-J • Shift and width of X-rays -> X-nuclear potential • Stopped X- events identified from emulsion

  27. Experimental Apparatus K1.8

  28. Hadron Hall X hypernuclei LLhypernuclei X-atomic X rays g spectroscopy n-rich Lhypernuclei Q+ search w nucleus SKS Beam Dump K- nucleus bound states K- atomic X rays h, f nucleus K1.8 (Fall,2009~) KL Handron Hall K1.8BR (Dec.2008~) • Production • target (T1) K1.1 (when?) 30 (→ 50) GeV primary beam g spectroscopy S hypernuclei YN scattering Q+ nucleus K0.8 (when?)

  29. SKS spectrometer(SksMinus) An Example of Setup (E13) p- SKS superconducting magnet 1.4 GeV/c Hyperball-J K- 1.5 GeV/c K1.8 beamline spectrometer

  30. SKS spectrometer Modified SKS magnet • Disassembled Jan.15-30 • Under modification of cooling system • Assemble at J-PARC site (2008 Sep.-Oct.) 1.4 GeV/c SksPlus for (K-,K+) • Additional magnet produced using an old iron yoke

  31. Double-sided Si Strip Detector Almost same as PS-E373 Setup of E07 KURAMA spectrometer (existing) # Beam :K- (1.7GeV/c), 3 x 105K-/spill withK-/p- > 6 at K1.8 beam-line (~20% of 9mA) # Trigger :(K-, K+) => 104 X- stopping events (more than 10 times higher statistics than E373) Hyperball-J Faster emulsion scanning system

  32. 5. Other plans • High resolution (~0.2 MeV) (p±,K+) spectroscopy for (n-rich) L, S hypernuclei (Noumi) • Weak decay of L hypernuclei (Bhang) • g spectroscopy of heavy L hypernuclei and n-rich L hypernuclei (Tamura) • Light S hypernuclear systems (Tamura) • SN, LN, (XN) scattering experiments (Ieiri, Miwa)

  33. 6. Summary • Hypernuclear physics is one of the most important physics subjects at the J-PARC Hadron Hall. • g spectroscopy of hypernuclei using Hyperball-J will further investigate LN interactions. Nuclear medium effect can be also studied from in-medium gL. • n-rich L hypernuclei to be studied at J-PARC will extend the hypernuclear chart and clarify the LN-SN mixing. • X hypernuclear data will provide the strength of XN interaction for the first time. • Many LL hypernuclear samples will be found, establishing the LL interaction, and revealing a possible LL correlation.

More Related