1 / 94

第二周预习思考题

第二周预习思考题. 1 、有机化合物命名的一般步骤怎样?母体如何选择?各种基团(官能团)的英文词头或词尾的变化规律如何? 2 、各种碳氢化合物的稳定性如何?芳香性与共振论是怎么回事?如何画极限共振结构式,并判断它们的能量高低? 3 、化合物结构与物理性质的关系如何? 4 、非共价弱作用力有哪些?. 第二章. 碳氢化合物 Hydrocarbon. 第二章重点讲解问题. 1. 碳氢化合物的命名(以烷烃和环烷烃为例) 2. 碳氢化合物的稳定性 3. 共轭烯烃、芳香性与共振论和分子轨道理论 4. 碳氢化合物的物理性质与分子间作用力关系.

Download Presentation

第二周预习思考题

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第二周预习思考题 • 1、有机化合物命名的一般步骤怎样?母体如何选择?各种基团(官能团)的英文词头或词尾的变化规律如何? • 2、各种碳氢化合物的稳定性如何?芳香性与共振论是怎么回事?如何画极限共振结构式,并判断它们的能量高低? • 3、化合物结构与物理性质的关系如何? • 4、非共价弱作用力有哪些?

  2. 第二章 碳氢化合物Hydrocarbon

  3. 第二章重点讲解问题 • 1. 碳氢化合物的命名(以烷烃和环烷烃为例) • 2. 碳氢化合物的稳定性 • 3. 共轭烯烃、芳香性与共振论和分子轨道理论 • 4. 碳氢化合物的物理性质与分子间作用力关系

  4. 2.1 碳氢化合物的分类与命名 • 2.1.1 Classification of hydrocarbon • Alkanes and Cycloalkanes • Alkenes (cis and trans) (Z and E) • Conjugated dienes • Aromatic hydrocarbons • Alkynes

  5. 2.1 碳氢化合物的分类与命名 • 2.1.2 Representing Molecules • Molecular formula CH4 H • a Stick figure H C H • a Lewis dot structure H • a Sawhorse representation

  6. 2.1 碳氢化合物的分类与命名 • 2.1.3 通式与不饱和度(环的数目) • Saturated Hydrocarbons: CnH2n+2 • For a formula: CnHm • Degree of unsaturated= (2n+2-m)/2 • If it is a cycloalkane, the degree of unsaturated equals to the number of ring

  7. 2.1.4 Nomenclature • Common Name and Systematic Name • CH4 CH3CH3 CH3CH2CH3 • Methane Ethane Propane • CH3CH2CH2CH3 CH3CHCH3 • CH3 • C. N. n-butaneisobutane • S. N. Butane 2-methylpropane

  8. 2.1.4 Nomenclature • CH3CH2CH2CH2CH3 Pentane • CH3CHCH2CH3isopentane, 2-methylbutane • CH3 • CH3 • CH3CCH3neopentane, 2,2-dimethylpropane • CH3

  9. 2.1.4 Nomenclature • CH3CH2CH2CH2CH2CH3 hexane • CH3CHCH2CH2CH3 isohexane, 2-methylpentane • CH3 • CH3 • CH3CCH2 CH3neohexane, 2,2-dimethylbutane • CH3

  10. 2.1.4 Nomenclature • CH3CH2CHCH2CH3 none 3-methylpentane • CH3 • CH3CH-CHCH3 none 2,3-dimethylbutane • CH3 CH3 • Alkyl Group R- (replacing “ane” with “yl”) • primary, secondary, tertiary, quaternary C, but only primary, secondary, tertiary H • ( see our text )

  11. 2.1.4 Nomenclature (IUPAC Rules) • Systematic Name (IUPAC Rules) • (IUPAC: International Union of Pure and Applied Chemistry) • 1. Determine the number of carbon in the longest continuous carbon chain----This chain is called the parent hydrocarbon. • 1 2 3 4 5 6 7 8 • CH3CH2CHCH2CH2CH2CH2CH3 3-methyl Octane • CH3 • CH3CHCH2CH2CH3 4-methyl Octane • CH2CH2CH2CH3

  12. 2.1.4 Nomenclature (IUPAC Rules) • 2. Number the chain so that the substituent gets the lowest possible number. • CH3CH2CHCH2CHCH2CH2CH3 5-ethyl-3-methyloctane • CH3 CH2CH3not 4-ethyl-6-methyloctane • because 3 < 4 • CH2CH3 • CH3CHCHCH2CH2CHCH3 3-ethyl-2,6-dimethylheptane • CH3 CH3not 5-ethyl-2,6-dimethylheptane • because 3 < 5

  13. 2.1.4 Nomenclature (IUPAC Rules) • 3. Cite the name of the alkyl substituent before the parent hydrocarbon. ---- A number and a word are separated by a hyphen; numbers are separated by a comma. di, tri, tetra is used to express the number of the same substituents • CH3CH2CHCH2CHCH3 2,4-dimethylhexane • CH3 CH3

  14. 2.1.4 Nomenclature (IUPAC Rules) • And list substituents in alphabetical order. ---- “di, tri, tetra, sec, and tert” are ignored in alphabetizing. “iso, neo, and cyclo” are not ignored in alphabetizing. • 3HC2HC CH3 • CH3CH2CCH2CH2CHCHCH2CH2CH3 3,3,6-triethyl-7-methyldecane • 3HC2HC CH2CH3 • CH3 • CH3CH2CH2CHCH2CH2CHCH3 5-isopropyl-2-methyloctane • CH(CH3)2

  15. 2.1.4 Nomenclature (IUPAC Rules) • 4. If the same substituent number are obtained in both directions, the first cited group received the lower number. • CH3 3-ethyl-5-methylheptane • CH3CH2CHCH2CHCH2CH3not • CH2CH3 5-ethyl-3-methylheptane • Cl 2-bromo-3-chlorobutane • CH3CHCHCH3not • Br 3-bromo-2-chlorobutane

  16. 2.1.4 Nomenclature (IUPAC Rules) • 5. If a compound had two or more chains of the same length, the parent hydrocarbon is the chain with the greatest number of substituents. • CH3CH2CHCH2CH2CH3 CH3CH2CHCH2CH2CH3 • CHCH3CHCH3 • CH3CH3 • 3-ethyl-2-methylhexane not 3-isopropylhexane • (two substituents) (one substituent)

  17. 2.1.4 Nomenclature (IUPAC Rules) • 6. If there are some complex substituents, we can use the similar method to name the substituents. • CH3CH2CHCH2CH2CH3 CH3CH2CH2CHCH2CH2CH3 • 1 2 1 2 3 • CHCH3 CH2CHCH3 • CH3 CH3 • 3-isopropylhexane or 4-isobutylheptane or • 3-(1-methylethyl)hexane 4-(2-methylpropyl)heptane

  18. 2.1.4 Nomenclature (IUPAC Rules) • 当一个饱和支链无环烃具有相同长度的链可作为主链时,则选择的顺序为: • 1)具有侧链数目最多的链 • 4-propyl-2,3,5- • trimethylheptane • not • 3-methyl-4-(1,2- • dimethylpropyl)heptane

  19. 2.1.4 Nomenclature (IUPAC Rules) • 2)侧链具有最低位次的链 • 2,5-dimethyl-4-(1-methylpropayl)heptane (not 3,4,5)

  20. 2.1.4 Nomenclature (IUPAC Rules) • 3)在较短的侧链中,具有碳原子数目最多的链 • (各侧链数分别为111288和111189) • 3-ethyl- 5,9,11-trimethyl-7,7-di(2,4-dimethylhexyl)tridecane

  21. 课堂练习: • 请给出上述结构的中英文IUPAC命名 • 1、4-(1-ethylpropyl)- 2,5,6,6-tetramethyloctane • 2、1-ethyl-2-mehylcyclopentane

  22. 2.1.4 Nomenclature (IUPAC Rules) • 7. For cycloalkane: (skeletal structure) • 1) In the case of a cycloalkane with an attached alkyl substituent, the ring is the parent hydrcarbon unless the substituent has more carbons than the ring. • A. Isopropylcyclohexane • B. 1-cyclobutylpentane

  23. 2.1.4 Nomenclature (IUPAC Rules) • 2) If the ring has two different substituents, they are cited in alphabetical order and the number 1 position is given to the first cited substituent. • A. 1-ethyl-3-methylcyclopentane • B. 1,3-dimethylcyclohexane

  24. 2.1.4 Nomenclature (IUPAC Rules) • 3) If there are more than two substituents on the ring, give the number 1 position to the substituent that result in a second substituent getting as low a number as possible. • A. 1,1,2-trimethylcyclopentane (not 1,2,2; not 1,1,5) • B. 4-ethyl-2-methyl-1-propylcyclohexane not 1,3,4, (2<3); not5,1,2, (4<5)

  25. 以下内容请自学: • Nomenclature of Alkenes (cis and trans) • (Z and E) • Alkynes • Conjugated dienes • Aromatic hydrocarbons

  26. 2.2碳氢化合物的稳定性 • 2.2.1 Saturated hydrocarbons ---- Alkanes • relatively stable • 2.2.2 Cycloalkanes ---- Ring Strain • Instability of three- and four-member rings • ---- due to angle strain

  27. 2.2碳氢化合物的稳定性 • 2.2.3 Alkenes ---- Pi Bonding • The functional group is the center of reactivity of a molecule. Carbon-carbon double bond (C=C) is the functional group of alkenes. • Strength of Bond: C-C 347.3 kJ/mole • C=C 610.9 kJ.mole • a Pi Bond is weaker than a Sigma Bond

  28. 2.2碳氢化合物的稳定性 • 2.2.4 Alkynes ---- Pi Bond • Strength of Bond: C-C 347.3 kJ/mole • C=C 610.9 kJ.mole • C=C 836.8 kJ/mole • Pi Bond in C=C: 263.6 kJ/mole • Pi Bond in C=C: 244.8 kJ/mole • an alkyne is less reactive than an alkene • Why?(Please think it out by yourself)

  29. 2.2碳氢化合物的稳定性 • Class of dienes: conjugated • isolated • cumulated • Heat of Formation:

  30. 2.2碳氢化合物的稳定性 • The difference between the heats reflects the difference in stability between the nonconjugated and conjugated dienes

  31. 2.2碳氢化合物的稳定性 • 2.2.5 Aromatic hydrocarbons • Benzene, with relatively few hydrogens comparing with aliphatic compound, is a particularly stable compound because it has an unusually large resonance energy 151kJ/mole)

  32. Questions: • Why is a conjugated diene more stable than an isolated diene? • Why is benzene a particularly stable compound?

  33. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • Conjugated Dienes • 1. Single bond between C2-C3 formed by sp2-sp2 overlap, the length of the bond is shorter, therefore the bond is stronger. • CH3--CH3 Csp3-Csp3 154pm • CH2=CH--CH3 Csp2-Csp3 150pm • CH2=CH--CH=CH2 Csp2-Csp2 146pm

  34. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • 2. Structure of Conjugated Dienes: • 3. The conjugated diene had delocalizedelectrons. We can draw the resonance structure: • resonance hybrid:

  35. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • 分子轨道理论阐述1,3-丁二烯的结构

  36. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • Structure of Benzene • 1. All the carbon are sp2 hybridized • 2. The p orbital on each carbon can overlap with two adjacent p orbitals. • 3. p-electrons in benzene are delocalized, we call such compound to have resonance.

  37. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • 电子离域与共振 • 上述结构较好地表示了电子的离域,但是却无法告诉我们该结构中含有多少双键。因此化学家常用共振结构来表示。

  38. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • Some basic concepts • 1. A compound with delocalized electrons is said to have resonance • 2. The approximate structure using localized electrons is called a resonance contributor,a resonance structure, or a contributing resonance structure • 3. The catual structure,drawn using delocalized eletrons, is called a resonance hybrid.

  39. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • Rules for Drawing Resonance Contributors • 1. Only electrons move. The nuclei of the atoms never move • 2. The only electrons that can move are π electrons and nonbonding electrons • 3. The total number of electrons in the molecule does not change, neither do the numbers of paired and unpaired electrons

  40. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • 4. The electrons can be moved in one of the following ways • 1) Move πelectrons toward a positive charge or toward a π bond

  41. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • 2) Move a nonbonding pair of electrons toward a πbond

  42. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • 3. Move a single nonbonding electron toward a πbond

  43. 课堂练习: • 请给出上述结构的中英文IUPAC命名 • 1、4-(1-ethylpropyl)- 2,5,6,6-tetramethyloctane not 3,3,4,7-tetramethyl-5-(1-ethylpropyl)- • 2、1-ethyl-2-mehylcyclopentane

  44. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • 2. Structure of Conjugated Dienes: • 3. The conjugated diene had delocalizedelectrons. We can draw the resonance structure: • resonance hybrid:

  45. 2.3 共轭烯烃、芳香性与共振论和分子轨道理论 • Aromaticity and Huckel’s Rule • Benzene ------ perticularly stable because of the resonance energy • But cyclobutadiene and cyclooctatetraene containscyclic two or four Pi-bond, they are not stable.

  46. Aromaticity and Huchel’s Rule • In 1938, a German chemist Erich Huckel recognized the difference between them and generalized this obeservation into Huckel’s Rule • ------- any plannar, cyclic, conjugated system containing (4n+2) Pi electrons (where n is an integer) experiences unusual aromatic stabilization

  47. Aromaticity and Huchel’s Rule • Molecular Orbital theory • ------- in benzene

  48. Aromaticity and Huchel’s Rule • Molecular Orbital theory • ------- in cyclooctatetraene

  49. Aromaticity and Huchel’s Rule • Other member rings

More Related