1 / 28

本日の目次

3次元複雑断層系における地震発生過程の理論的研究 Theoretical study on earthquake generation process in a 3D complex fault system 青地秀雄(仏・地質調査所) Hideo Aochi (BRGM, France). 本日の目次. 簡単な紹介 問題設定とシミュレーション手法 1992年ランダース地震 中部デュロンス断層帯(仏南東部)におけるシナリオ地震. 略歴. 2004- BRGM ( 仏・地質調査所): H. Modaressi 博士 力学的計算に基づく地震ハザード・リスク研究(有限要素法)

Download Presentation

本日の目次

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3次元複雑断層系における地震発生過程の理論的研究Theoretical study on earthquake generation process in a 3D complex fault system青地秀雄(仏・地質調査所)Hideo Aochi (BRGM, France)

  2. 本日の目次 • 簡単な紹介 • 問題設定とシミュレーション手法 • 1992年ランダース地震 • 中部デュロンス断層帯(仏南東部)におけるシナリオ地震

  3. 略歴 • 2004- BRGM (仏・地質調査所):H. Modaressi博士 • 力学的計算に基づく地震ハザード・リスク研究(有限要素法) • 2003-2004 IRSN(仏・放射線防護原子力安全研究所):C. Berge-Thierry 博士 • 地震ハザード研究への応用 • Aki & Richards 翻訳 • 2000-2003 ENS Paris (パリ高等師範学校):R. Madariaga教授 • 相互作用のある断層系における地震破壊過程の数値的研究 • 近地地震動の計算(差分法) • 2000 東大院理(博士):松浦充宏教授 • 3次元複雑断層系における地震破壊過程の理論的研究(境界積分法) • 断層構成則の研究 • 1995 東北大理(学士):大竹政和・佐藤春夫教授 • 地震活動のフラクタル解析

  4. 対象となった論文 • Cruz-Atienza, V., J. Virieux and H. Aochi, 3D Finite-Difference Dynamic-Rupture Modelling Along Non-Planar Fault, Geophysics, 72, SM123-SM137,2007. • Aochi, H. and J. Douglas, Testing the validity of simulated strong ground motion from the dynamic rupture of a fault system, by using empirical equations, Bull. Earthq. Engineering, DOI 10.1007/s10518-006-0001-3, 2006. • Aochi, H., M. Cushing, O. Scotti, and C. Berge-Thierry, Estimating rupture scenario likelihood based on dynamic rupture simulations: the example of the segmented Middle Durance fault, southeastern France, Geophys. J. Int.,165, 436-446, 2006. • Aochi, H., O. Scotti, and C. Berge-Thierry, 3D dynamic rupture propagation along complex segments with different mechanisms, Geophys. Res. Lett., 32, L21304, doi:10.1029/2005GL024158, 2005. • Aochi, H. and K. B. Olsen, On the effects of non-planar geometry for blind thrust faults on strong ground motion, Pure appl. Geophys., 161, 2139-2153, 2004. • Aochi, H. and R. Madariaga, The 1999 Izmit, Turkey, earthquake: Non-planar fault structure, dynamic rupture process and strong ground motion, Bull. Seism. Soc. Am., 93, 1249-1266, 2003. • Aochi, H. and E. Fukuyama and R. Madariaga, Constraints of Fault Constitutive Parameters Inferred from Non-planar Fault Modeling, Geichemistry, Geophysics, Geosystems, 4(2), 10.1029/2001GC000207, 2003. • Aochi, H., R. Madariaga and E. Fukuyama, Effect of Normal Stress During Rupture Propagation along Non-planar Fault, J. Geophys. Res., 107, 10.1029/2001JB000500, 2002. • Aochi, H. and E. Fukuyama, Three-dimensional nonplanar simulation of the 1992 Landers earthquake, J. Geophys. Res., 107, 10.1029/2000JB000061, 2002. • Aochi, H., E. Fukuyama and M. Matsu'ura, Selectivity of spontaneous rupture propagation on a branched fault, Geophys. Res. Lett., 27, 3635-3638, 2000. • Aochi, H., E. Fukuyama and M. Matsu'ura, Spontaneous Rupture Propagation on a Non-planar Fault in 3D Elastic Medium, Pure appl. Geophys., 157, 2003-2027, 2000.

  5. 断層形状と地震破壊 屈曲・セグメント化 破壊の開始・停止 =地震のサイズ King and Nabelek (1985)

  6. 数値研究例 • 差分法 • Harris and Day (1991, 93, 99) • Kase and Kuge (1998, 2001) • Magistrale and Day (1999) • Cruz-Atienza et al. (2007) 境界条件の入れ方(断層形状)が限られる。 Harris and Day (1999)

  7. 境界積分法 • 無限均質弾性媒質のグリーン関数(解析解) • 仮想反射震源をおくことにより自由表面を近似 • 解の精度 • 計算量がべき乗で増える • 歴史 • 2D anti-plaine …Cochard and Madariaga (1994) • 3D plaine … Fukuyama and Madariaga (1995)

  8. Strategy of dynamic simulation The 1992 Landers, CA (M7.3) • 1. Initial Condition • Fault Geometry • Tectonic Stress • Rupture Criterion 2. Dynamic Rupture Propagation (BIEM) Aochi et al. (Pageoph, 2000) 3. Seismic wave Propagation (FDM) 4. Accelerogram Aochi and Fukuyama (JGR, 2002), Aochi et al. (G-cubed, 2003)

  9. Modelling Strategy Landers 1992 (M7.2) Eq. 1. Initial Condition Geometry, Stress, Friction, etc. 2. Dynamic Rupture 3. Wave Propagation BIEM, FDM, FEM According to the objectives 4. Site Effect 5. Structure Response

  10. 1992年ランダース地震 地表断層トレース (Hart et al., 1993) • 古地震の研究 • (Rockwell et al., 2000) • Kickapoo 小断層は過去に存在した。 • 同時代に各断層が前回破壊した。

  11. 断層構成則(境界条件) 深さに依存する‘Slip-weakning’ 構成則 Sibson (1982, 1984) Scholz (1988) Ohnaka (1992) Ide and Takeo (1997) 剪断応力 すべり

  12. テクトニクス(初期条件) テクトニクスモデル Unruh et al. (1994) テクトニクス応力のシステム

  13. 動的破壊シミュレーション(境界積分法) Example 1 Tectonic stress Example 2 Tectonic stress + heterogeneity

  14. 地震動計算(波数積分法) Fréquence 0.07-0.5Hz

  15. 中部Durance断層(フランス南東部)

  16. Characteristic Features • Moderate Seismicity • Repeated Historical Earthquake • (M5-5.3, since 1509 every 100y) • Paleoseismological large earthquake (M=7) One of the most important region for seismic risk assessment in France What are Possible Earthquake Scenarios?

  17. Compilation of Stress Field(geology, seismicity, in-situ measurements, …) Durance After M. Rocher (IRSN/BERSSIN)

  18. Segmented Fault Model 5 Segments with different mechanisms BIEM Param (infinite/homogeneous) Tectonic Stress (uni-axiale) s1 = N160°E  a

  19. Stress and Rupture Criterion Fixed param. Shear stress Variable param.  cf. Aochi et al. (JGR, 2002) O slip =50cm

  20. Probabilistic Approach Hypothesis (unknown) Focal Mechanism (Baroux et al., 2001)

  21. Simulations Results • Condition • Tectonic Stress=N180E. • Low Absolute Stress. • Hypocenter on Seg 3. • Probability=0.17% rake=0° 4° 19° • Results • Ruptured Seg=4. • Rupture Length=55km. • Rupture Mode=bilateral • Mw=6.92. 40°

  22. Simulations Results • Condition • Tectonic Stress=N160E. • Low Absolute Stress. • Hypocenter on Seg 4. • Probability=4.55% rake=8° • Results • Ruptured Seg=3. • Rupture Length=45km. • Rupture Mode=uni-lateral • Mw=6.80. 36° 63°

  23. Simulations Results • Condition • Tectonic Stress=N180E. • Low Absolute Stress. • Hypocenter on Seg 5. • Probability=4.55% rake=63° • Results • Ruptured Seg=1. • Rupture Length=10km. • Rupture Mode=single • Mw=6.32.

  24. Results of Earthquake Scenarios Maximum event: 4 segment rupture Mw6.9 High possibility: Independent rupture on each segment, or 3 segment SN striking rupture

  25. Comparison between Segments Easiest segment to be ruptured Note: Initial stress is always the same on Seg 4 and 5.

  26. Rupture Directivity More favorable Note: No propagation between Seg 5 and the others is found.

  27. まとめ • 断層構造の複雑さをシミュレーションし、地震破壊過程を3次元で議論することに成功した。 • マクロな断層構造が、破壊の進行方向、アスペリティーを支配することを実際の地震のシミュレーションから明らかにした。 • これらの知見は地震ハザード研究へ応用される。 • より一層、実際に近い状況(周辺構造の複雑さ)でモデル化されることが望まれる。 • より一層の実際の地震の例を検証する必要がある。

  28. 謝辞 • Thanksfor the director of my theses, all my colleagues and friends I met. • Thanks for all the professional opportunities I got mainly in Japan and France.

More Related