1 / 33

M BH - σ relation in AGNs

Bian Weihao Department of Physics, Nanjing Normal University. M BH - σ relation in AGNs. Outline. 1. SMBH masses in AGNs, M BH 2. Bulge velocity dispersion, σ 3. M BH - σ relation in AGNs. 1. SMBH masses in AGNs, M BH. ~10 17 cm. (Elvis et al. 1994). (Francis et al. 1991).

leane
Download Presentation

M BH - σ relation in AGNs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bian Weihao Department of Physics, Nanjing Normal University MBH-σ relation in AGNs

  2. Outline 1. SMBH masses in AGNs, MBH 2. Bulge velocity dispersion,σ 3. MBH-σrelation in AGNs

  3. 1. SMBH masses in AGNs, MBH ~10 17 cm (Elvis et al. 1994) (Francis et al. 1991)

  4. SMBH virial mass mv2 – GmMBH /R = 0 MBH = v2R /G MBH m Schwarzschild radius: RS = 2GMBH/c2 =3MBH/Msun km = 3 × 1013 M8cm=10-2 M8lt-days.

  5. Period: 15.6 years • R~2000 Rg • (Belgeman, 2003, Science, • 300, 1898) • M: (3-4)x106Msun • For S14: R~1000 Rg • Smaller R, • Stronger evidence S2

  6. Virial Estimators Reverberation Mapping Technique is independent of angular resolution photoionization model: ionization source variance => emission line variance time delay X-Ray Fe K 3-10 RS Broad-Line Region 103 RS Megamasers 104 RS Gas 106 RS Stellar 106 RS t = t3 +  t = t2 t1 – t2 =  t = t3 t = t1

  7. NGC 5548:RBLR~20 lt-days (~300 days) MBH~108Msun

  8. For Quasar PG 0804+761: RBLR~156 lt-days (~6 Years) (Kaspi, et al. 2000, ApJ, 533,631)

  9. RMS and mean spectrum Mainly from NLRs Boroson, 2003, ApJ, 585, 647 Peterson et al., 2004, ApJ, 613, 282

  10. Peterson et al., 2004, ApJ, 613, 282 HeII4686

  11. PG 1700

  12. RBLR – L scaling relation r L1/2 • To first order, AGN spectra look the same • Baldwin Effect • C IV 1549, et al. • Origin? • Same ionization parameter • Same density SDSS composites Vanden Berk et al. astro-ph/0310840

  13. To first order, quasar spectra look similar at all redshifts 744 Type I AGNs, 0< z< 5; Dietrich et al 2002, ApJ, 581, 912

  14. Wu X., et al., A&A, 2004, 424, 793 Kaspi, et al. 2000, ApJ, 533,631 Kaspi et al. 2005, ApJ, 629, 61 McLure & Jarvis, 2002, MNRAS, 337, 109 MBH=f VFWHMRBLR2/G f=5.5 \pm 1.8 MBH-σrelation Onken et al., 2004, ApJ, 615, 645 Vestergaard & Peterson 2006 astro-ph/0601303 (H0=70 km/s/Mpc; ΩΛ = 0.7)

  15. The slope of RBLR-L relation • Host galaxy light in Seyfert 1, the luminosity at the faint end. • 0.67 => 0.52 Bian et al., 2004, ChJAA, 4, 61 Bentz et al., 2006, astro-ph/0602412

  16. Accuracy problem (dex) Reverberation 0.3 Zero-point, understand BLR  f, Mapping MBH - relation: -- *bulge0.3Extend to luminous quasars Scaling Relations 0.5-0.6 R-L relationships, understand outliers -- [OIII] [OII] [SII]0.7 Understand scatter & outliers -- Fundamental?Quantify & establish higher Plane:e, re accuracy MBH – Lbulge 0.6-0.7Calibrate to reverberation mapped & scaling relations

  17. 2. Bulge velocity dispersion,σ Opt/IR spectra of host galaxies => σ Ca II triplet 8498、8542、8662\AA; Mg b triplet 5167、5172、5183\AA; Ca K+H 3934 3969 \AA Kauffmann et al. 2003, MNRAS, 346, 1055 Host galaxies of 22623 SDSS AGNs (Type II)

  18. Vanden Berk, et al., 2006, AJ, 131, 84, SDSS AGNs, astro-ph/0509332

  19. σ measurement • Fourier techniques: • cross-correlation; Fourier quotient; Fourier correlation quotient • Direct-fitting in pixel space: • stellar templates broadened by with σ g(n): host galaxy spectrum; t(n): template spectrum; B(n-δ): Gaussian broadening function X: cross-correlation *: convolution Rix & Whittle, 1992, MNRAS, 254, 389 Nelson & Whittle, ApJS, 1995, 99, 67 Kauffmann et al. 2003, MNRAS, 346, 1055 Cid Fernandes, et al., 2005, MNRAS, 358, 363 Greene & Ho, ApJ, 2005,astro-ph/0512462 Woo, et al., 2006, ApJ, astro-ph/0603648 t(x): template spectrum G(x): Gaussian broadening function C(x): AGNs continuum, power-law P(x): polynomial factor

  20. σ - σ[O III] relation σ[O III] = FWHM([O III])/2.35 Nelson & Whittle, ApJS, 1995, 99, 67 McElory , 1995, ApJS, 100, 105 Kauffmann et al. 2003, MNRAS, 346, 1055 Ferrarese, et al. ApJ, 555 ,L79 Falomo et al., ApJ, 569, L35 Barth, et al., 2005, ApJ, 619, L151, 0412575 Greene & Ho, ApJ,2006, astro-ph/0512462 Woo, et al., 2006, ApJ, astro-ph/0603648 • Line asymmetries • Outflows • Radio sources (jet) • Interacting systems

  21. Bian, Gu, Zhao, 2006, for 0.3< z 0.83 Type II AGNs SDSS J150117.96+545518.2

  22. 3. MBH-σrelation in AGNs AGNs Onken, et al., ApJ, 2004, 615, 245 Mass from reverberation mapping method is reliable.

  23. Nelson, 2001, ApJ, 544, L91 σ[O III] = FWHM([O III])/2.35

  24. Barth, et al., 2005, ApJ, 619, L151, 0412575 Keck II telescope

  25. Greene Ho, ApJL, In press, astro-ph/0512461, 40+16 SDSS AGNs

  26. Woo, et al., 2006, ApJ, astro-ph/0603648, Z=0.36

  27. MBH-σrelation in NLS1s 150 NLS1s from SDSS EDR (Williams R.J., Pogge R.W., Mathur S, 2003, AJ, 124, 3042) 22 NLS1s from HST observation (Constantin & Shields, 2003, PASP, 115, 592)

  28. Bian & Zhao, MNRAS, 2004, 347, 607; Grupe & Mathur, 2004, ApJ, 606, L41; Botte, 2005, MNRAS, 356, 789 Barth, et al., 2005, ApJ, 619, L151 Zhou et al., 2006, astro-ph/0603759, ~308 σ,for a sample of ~2000 NLS1s from SDSS DR3 Dynamics of NLRs in NLS1s would be different than that of other AGN

  29. Barth, et al., 2005, ApJ, 619, L151, Astro-ph/0412575 NLS1s ?? ~Z, L5100, L/LEdd

  30. Theory on MBH–σrelation • Vittorini, Shankar, & Cavalier 2005, astro-ph/0508640 (BH growth history from merger/feedback events; simulation) • Robertson et al. 2005, astro-ph/0506038 (mergers simulation) • Di Matteo, Springel, & Hernquist 2005, Nature, 433, 604 (merger induced BH growth and starformation; simulation) • Springel, Di Matteo, & Hernquist 2005, MNRAS, 361, 776 (BH/star formation feedback; simulations) • Miralda-Escude & Kollmeier 2005, ApJ 619, 30 (stellar capture) • Sazonov et al. 2005, MNRAS 358, 168 (radiative BH feedback) • King 2003, ApJ 596, L27 (supercritical accretion, outflows) • Adams et al. 2003, ApJ 591, 125 (rotating BH collapse model) • ….and many more…..

  31. Thank you !

More Related