1 / 59

放射治療全面化品質管理之概念探討

放射治療全面化品質管理之概念探討. The Concept of T otal Q uality M anagement in Radiotherapy. 林口長庚紀念醫院 放射腫瘤科醫學物理組組長 中華民國醫學物理學會 理事長 葉 健 一. 依據 WHO(1995 年 ) 預測公元 2015 年,全球當年將會有 1 千 5 百萬新的癌症病人產生。 在還未有更有新及更有效的癌症治療技術之前,約有 50% 的癌症病人還是需要以放射治療作為治癒性或姑息性的治療。 由於全球對於放射治療技術的依賴,因此需要有更多放射治療部門資源的協助。. 還好 ----

leola
Download Presentation

放射治療全面化品質管理之概念探討

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 放射治療全面化品質管理之概念探討 The Concept of Total Quality Management in Radiotherapy 林口長庚紀念醫院 放射腫瘤科醫學物理組組長 中華民國醫學物理學會 理事長 葉 健 一

  2. 依據WHO(1995年) 預測公元2015年,全球當年將會有1千5百萬新的癌症病人產生。 • 在還未有更有新及更有效的癌症治療技術之前,約有50%的癌症病人還是需要以放射治療作為治癒性或姑息性的治療。 • 由於全球對於放射治療技術的依賴,因此需要有更多放射治療部門資源的協助。

  3. 還好---- • 現代新發展的放射治療技術,不但可以提高腫瘤的治癒機率並且可以降低正常組織的併發症。 • 由於新的放射治療技術快速發展,相對的更需要有受過專業訓練的人員:放射腫瘤醫師、醫學物理師、放射治療師。

  4. 然而---- • 由於新技術的複雜度,使得從處方劑量到實際劑量給予的治療過程中,產生許多不可預知的不確定誤差。

  5. 很不幸---- • 在許多可能的錯誤中,除了治療計劃到實際劑量給予過程中已存在的內在不確定誤差外,事實上過程中還包括:人為的誤差或與設備有關的誤差。

  6. 不過---- • 經由完整系統性的品質保證管理,可以大幅降低不適當放射治療所造成風險。

  7. 因此藉由---- • 各機構品質保證管理作業流程的監控。 • 各醫院彼此間品保計劃的合作。 • 全國性或國際性所認證的監測參考系統。 • 建立全國或國際一致性的放射治療品質標準。

  8. 什麼是全面化品質管理(TQM)的定義? 企業管理觀點: TQM為組織的一種管理方式,此種管理方式是以品質為中心,以組織的所有成員參與為基礎,並且藉由顧客滿意及組織成員和社會獲益來達成組織長期成功之目標。

  9. 什麼是全面化品質管理(TQM)的定義? 放射治療觀點: TQM為放射治療的一種管理方式,此種管理方式是以品質為中心,以放射治療的所有成員參與為基礎,並且藉由病患治療的成效及組織成員和社會獲益來達成組織長期成功之目標。

  10. 什麼是放射治療全面化品質管理最初步的規劃?什麼是放射治療全面化品質管理最初步的規劃? • 品保組織與角色分工 • 治療流程與相關作業 • 品保標準與品保程序 • 品保實施與品保審查 • 品保追蹤與品保記錄 • 教育訓練與人員考核 • 院際合作與系統監測

  11. 品保組織與角色分工規劃 醫師 * 品保組織灰色地區 錯誤最常出沒地區 醫學物理師 放射治療師 護士、其它

  12. 癌症診斷 劑量照野規劃 治療政策決定 醫師 治療計劃選擇 治療技術規劃 治療結果評估 治療過程監測 例行追蹤

  13. 病例討論 治療技術規劃 影像取得驗證 醫學物理師 治療計劃規劃 劑量照野規劃 治療劑量驗證 治療資料驗證 設備品質測量

  14. 病例討論 影像攝影操控 固定模具製作 治療放射師 病歷資料驗證 照野形狀 輔具製作 治療過程監控 治療實施 設備品質監測

  15. 會診預約手續 門診護理處理 病歷及各類 表單準備 護士、其它 治療流程 預約與說明 衛教與營養 指導 回診追蹤手續 治療中護理 癌症登記

  16. 治療流程與相關作業規劃 一般作業流程圖示常用符號

  17. 品保標準與品保程序規劃 • 針對放射治療有關的品質保證標準與程序,目前已有一些的國際組織或專業文獻有很詳盡的討論及建議。 例如: AAPM Task Group 40 (1994) ,Comprehensive QA for radiation oncology WORLD HEALTH ORGANISATION (WHO 1988), Quality assurance in radiotherapy INSTITUTE OF PHYSICS AND ENGINEERING IN MEDICINE (IPEM 1999) , Physics aspects of quality control in radiotherapy EUROPEAN SOCIETY FOR THERAPEUTIC RADIOLOGY AND ONCOLOGY (ESTRO 1995), Quality assurance in radiotherapy Van Dyk and Purdy (1999); Clinical implementation of technology and the quality assurance process in The Modern Technology for Radiation Oncology

  18. 國內各醫院目前放射治療品保依據標準 結合國內各醫院醫學物理師臨床實務經驗,並參考美國AAPM (TG#40;TG#43)有關放射治療品保作業, 目前範圍侷限於直線 加速器、鈷六十遠隔治療機、遙控後荷式治療機。

  19. 國內目前放射治療品保標準

  20. 除了目前實施的品保標準外還有那些可以作? • 作業流程中足以影響病患劑量,例如:電腦系統內的射束資料錯誤、人為劑量計算公式的誤判、治療部位不正確、輔助病患治療附屬設備錯誤使用、治療資料記載錯誤、病人資料登錄錯誤--等。 • 作業流程中足以影響病患安全,例如:病患固定模具製作不當、病患上下治療床、治療附屬設備不穩固、治療門開關安全保護不當、急救措失計劃不周詳--等。

  21. 除了目前實施的品保標準外還有那些可以作? • 作業流程中足以影響工作效率,例如:病歷傳送不確實、計劃流程監控不夠、工作人員彼此間訊息傳送方式有問題、緊急狀況沒有標準處置方式 --等。 • 作業流程中足以影響過多資源的浪費,例如:醫囑不夠清楚、病患固定模具品質監控不夠、影像系統品質定期監控不夠、治療資料記載不確實、病況了解不夠詳盡--等。 • 新技術作業流程的規劃

  22. 如何設定品保標準與程序? 標準: 以病患治療成效及病患安全作先決的考量 程序: 以不影響品質的判斷及提昇工作的效率為考量 寫你所做(Write what you do)

  23. 品保實施與品保審查 • 做你所寫(Do what you write) • 檢查你做的結果(Check what you did) • 改正你所做的結果(Act what you did)

  24. 品保記錄與品保追蹤 • 記載你所做(Record what you did) • 追蹤你所做的結果(Follow-up what you did)

  25. 院際合作與系統監測 • 利用合作網路的案例: 郵寄熱發光劑(TLD)作為劑量監測方案,不但可以只針對輸出劑量品質監測, 並且可以延伸作為其它治療技術的劑量品質監測。

  26. 全球性放射治療劑量品質監測網路 International Atomic Energy Agency, Vienna,Austria EQUAL, European Society for Therapeutic Radiology and Oncology, Villejuif, France Radiology Physics Center, M.D. Anderson Cancer Center, Houston, Texas,USA

  27. International Atomic Energy Agency

  28. 放射劑量及醫學物理部門 (Dosimetry and Medical Radiation Physics Section)執行劑量品質監測主要工作包括: 1. 利用郵寄TLD劑量系統監測放射治療醫院 2. 丙氨酸-電子自旋共振劑量系統(alanine-ESR dosimeters)監 測工業用放射線劑量處理設施 上述的監測服務是要求使用者照射TLD一定的已知劑量再將其寄回給IAEA作測讀及分析

  29. 將近30幾年來IAEA利用郵寄TLD劑量監測系統提供給開發中國家作為放射劑量驗證,1991年前主要是使用於C0-60治療機之後就開始應用於臨床高能直線加速器;1981年開始用TLD作為監測次級標準實驗室(SSDL)放射治療劑量驗證服務。將近30幾年來IAEA利用郵寄TLD劑量監測系統提供給開發中國家作為放射劑量驗證,1991年前主要是使用於C0-60治療機之後就開始應用於臨床高能直線加速器;1981年開始用TLD作為監測次級標準實驗室(SSDL)放射治療劑量驗證服務。

  30. The IAEA/WHO TLD postal program for external audits of the calibration of high-energy photon beams used in radiotherapy has been in operation since 1967. The IAEA supported 18 national networks that encompass approximately 1250 hospitals with 940 Co-60 units and 550 linacs. Due to the different stages of implementation of the national systems in these countries, at present, about 60% of local hospitals are involved in the regular audit program.

  31. Results of the reference irradiations during 1997-2001 provided by the reference hospitals and major TLD networks. The symbols correspond to the ratios of the IAEA’s determined dose (D IAEA) relative to the dose stated by the reference centers (D stat). Each data point corresponds to the average of three dosimeters. A total of 180 reference irradiations were provided during this period. The mean of the distribution is 1.002 and the standard deviation was 1.1%.

  32. Distribution of the number of beams checked in different regions during 1997-2001. The results pertain to 1520 photon beams in 626 hospitals of 90 countries in six world regions: Africa (AF), Latin America (AM), East-Mediterranean (EM), Europe (EU), South-East Asia (SE) and Western Pacific (WP).

  33. Distribution of the results of the IAEA/WHO TLD postal dose audits of radiotherapy hospitals for the delivery of absorbed dose to water under reference conditions during 1997-2001. The histograms correspond to ratios of the IAEA’s determined dose (D TLD) relative to the dose stated by the hospital (Dstat). Each data point corresponds to the average of two dosimeters.

  34. The mean of the distribution is 1.010, its standard deviation 8.2%. In 82% of the cases, the results were within the acceptance limit of 5%, whereas 2.6% (25 beams) had discrepancies larger than 20%, pointing at major problems in the delivery of dose to the TLDs. All results outside the 5% acceptance limit were followed-up with a second participation. The majority of participants improved their results in the second irradiation but, unfortunately, about 15% of the deviations outside 5% could not be resolved. This was due either to a persistent error or to failure in responding to the efforts by the IAEA to help resolve the problem. On site visits were organized to several hospitals where dosimetry practices were revised and recommendations were provided to the local staff.

  35. The experience from the TLD service demonstrates a significance for a hospital to participate in an external audit programme. Only 75% of those hospitals who receive TLDs for the first time have results with deviation between measured and stated dose within acceptance limit of 5%, while approximately 88% of the users that have benefited from a previous TLD audit are successful.

  36. Estro-Equal Radiotherapy Dosimetry Audit for radiotherapy Since 1998 the European Society for Therapeutic Radiology and Oncology (ESTRO) has set up a TLD Quality assurance programme (EQUAL), in which more than 55% of all 800 European radiotherapy centres have participated. This TLD postal dose assurance service addresses to photon and electron beam checks in reference and non-reference conditions and is successful with more than 440 radiotherapy centres and 1,500 beams checked

  37. The Radiological Physics Center (RPC) The Radiological Physics Center (RPC) has been funded continuously since 1968 to monitor radiation therapy dose delivery at institutions participating in clinical trials sponsored by the U.S. National Cancer Institute (NCI). The RPC also serves as a national resource in radiation dosimetry and physics for cooperative clinical trial groups and all radiotherapy facilities that deliver radiation treatments to patients entered onto cooperative group protocols. The methods of monitoring include 1) on-site dosimetry reviews by an RPC physicist 2) various remote audit tools.

  38. The remote audit tools include: • mailed thermoluminescent dosimeters (TLD) evaluated on a • periodic basis to verify output calibration, and simple questionnaires to document changes in personnel, equipment, or dosimetry practices, • 2) comparison of dosimetry data with RPC ‘standard’ data to verify the comparability of the dosimetry data, • 3) evaluation of reference and/or actual patient calculations to verify the validity of the treatment planning algorithms, • 4) review of the institution’s written quality assurance procedures and records • 5) mailable anthropomorphic phantoms to verify tumor dose delivery for special treatment techniques.

  39. TLD phantom with rods in a spiral trajectory in Lucite housing. Each rod has a hole that holds a single TLD cube. Spiral phantom in Lucite housing, showing attached array of four reflective localizers for optical guidance. The phantom is attached to a couch mount that allows precise adjustment of position and angles with 6 degrees of freedom.

  40. The ratio of institutions’ stated dose to the RPC’s dose measured with mailed TLD. The figure covers photon beam data collected during the year 2000,

  41. A NATIONAL TLD THERAPY DOSIMETRY QUALITY ASSURANCE PROGRAM ARPANSA has now developed a TLD quality assurance service for photon beams in Australian radiotherapy centres. A pilot study during May and June 2002 involved six centres. The mean ratio of measured to stated dose was 1.004 with a standard deviation of 1.5%, The audit will be repeated every 2-3 years and the range extended to include electron beams. Comparisons with overseas audit programs will be undertaken.

  42. Dose Evaluation Hospital Dose DM measured at ARPANSADM = Dref x B(QM) x F(QM) x H / C QM = Beam Quality value, evaluated at ARPANSA or supplied by centreB = Beam Quality Correction Factor, supplied by the IAEAF = Holder Correction Factor, supplied by the IAEAH = Hospital Capsule Counts, corrected for background C = Control Capsule Counts, corrected for backgroundDref = Reference dose (nominal 2 Gy) traceable to Australian standard of absorbed dose at 60Co

  43. Swiss Society of Radiobiology and Medical Physics

More Related