1 / 44

Stéphane Arnouts David Schiminovich Olivier Ilbert and VVDS and GALEX teams

PI : Chris Martin (Caltech). PI : O. LeFèvre (Marseille) G. Vettolani (Bologna). THE GALEX-VVDS DEEP SURVEYS : Evolution of the Far UV luminosity Function and Density (+ SFR) up to z=1.5. Stéphane Arnouts David Schiminovich Olivier Ilbert and VVDS and GALEX teams.

lilac
Download Presentation

Stéphane Arnouts David Schiminovich Olivier Ilbert and VVDS and GALEX teams

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PI : Chris Martin (Caltech) PI : O. LeFèvre (Marseille) G. Vettolani (Bologna) THE GALEX-VVDS DEEP SURVEYS : Evolution of the Far UV luminosity Function and Density (+ SFR) up to z=1.5 Stéphane Arnouts David Schiminovich Olivier Ilbert and VVDS and GALEX teams

  2. One of the principal goal of GALEX • Evolution of the SFR density up to z=1.5 • UV sensitive measurement of the ongoing Star Formation • Used to derive SFRD: • locally (z<0.2 , FOCA) • at high-z (z>2.5, in optical band) • GALEX fills the gap where most of the SFR evolution is seen • Required • DEEP and WIDE GALEX observations • DEEP and WIDE optical spectro-photometry observations

  3. Outline of the talk : • Results from a PILOT STUDY done in the 2hr field : • GALEX Deep obervations • VVDS Deep spectroscopy and photometry • Spectroscopic sample : • Evolution of the FUV LF and LD • Implication in the SFR history • Morphology of a sub-sample of UV luminous galaxies • Recent Photo-z analyses : • Combined dataset : VVDS+CFHTLS+SWIRE

  4. GALEX-02hr field Texp= 52765 sec <E(B-V)>=0.027 Used area :  FUV+NUV color image AAS 72.07 - DS

  5. NUV < 24.5. Completeness correction with HST counts (Gardner et al. 2000) GALEX Galaxy Number counts

  6. The 2hr field combined dataset VVDS : BVRI (JK) VVDS : spectroscopy IAB=24 GALEX • AND • CFHTLS : ugriz • SWIRE : 3.6 to 8m • +24m (section photo-z) Spectroscopic Area : 0.46 deg2

  7. GALEX - OPTICAL matches NUV band5” PSF AAS 72.07 - DS

  8. GALEX - OPTICAL matches B band1” PSF AAS 72.07 - DS

  9. GALEX - OPTICAL matches PSF=5’’ but good astrometry Counterparts searched in a distance = 4’’ : ast= 0.7’’ • ALL UV sources have an optical counterparts • NUV<24.5 ~50% have a single optical counterparts • NUV<24.5 ~35% have two optical counterparts • NUV<24.5 ~15% have more than two optical counterparts

  10. GALEX - OPTICAL matches • Preliminary Analysis : • UV sources matched with the closest OC • which is in 90% cases the brightest one • Impact of the blends based on : • -1 : expected colors from single match • -2 : apportion the UV flux among the multiple OCs • using Sutherland & Sanders (1992) method • <UV flux> overestimated by • 0.25 mag for 2 OCs • 0.50 mag for multiple OCs

  11. GALEX with VVDS spectroscopy ~1100 Zspec 19.5<NUV<24.5 ~15% UV sample

  12. Color distribution Saturation in I Spectro : Good sampling of UV sources. Saturation : 95% at z<0.2 (SDSS) IAB>24: only 4% Limit spectro

  13. Redshift distribution LF with secure redshifts Unique OC <= 2 Ocs full sample

  14. FUV Luminosity Function with ~1000 Z-spectro (Arnouts, Schiminovich, Ilbert et al. 2005) FUVabs from NUV mag LF estimators : Vmax, C+, SWML, STY using ALF tool (Ilbert et al., 2004) Weight to account for : Spectroscopic strategy NUV counts completeness Local GALEX LF (Wyder et al., 2005) Strong evolution from 0<z<1.2 (GALEX)

  15. FUV Luminosity Function at higher z (Arnouts, Schiminovich, Ilbert et al. 2005) Zphot from HDF N+S (Arnouts et al., 1999 & 2002) z to be FUV rest-frame : 1.75<Z<2.25 with F450<27 2.40<Z<3.40 with F606<27 1700A LF @z=3 (Steidel et al., 1999) Trend continues to z=3 (HDF)

  16. Evolution of the FUV Luminosity Function Arnouts, Schiminovich, Ilbert et al (2005) Possible evolution in slope Significant evolution 0 < z < 1 : M*= 2 mag (or x6 in L*) 1 < z < 3 : M*= 1 mag

  17. GALEX AIS-MIS : Wyder et al GALEX DIS : This work Sum of (L).L.dL Using Vmax LF HDF : Arnouts et al (99, 02) Steidel et al (1999) Integration of STY fit up to L=0 Evolution of FUV Luminosity DensitySchiminovich, Ilbert, Arnouts et al. (2005) LD using ALF tool (1+z)3.5 (1+z)2.5 (1+z)1.5 (1+z)2.5 luminosity density evolution since z~1 Continued slow evolution 1<z<3

  18. UV Luminous Galaxies (UVLGs)(DS, Ilbert, Arnouts et al) • Luminosity density of • UV luminous: L>0.2 L*(z=3) • “LBG-like” galaxies shows • dramatic evolution: (1+z)5 • Steeper than QSO • LD evolution • (Boyle + Madau et al) • UVLGs produce a • significant fraction of LD • at z = 1 (25%) Total (1+z)2.5

  19. Sizes of extreme UV-luminous galaxies (Slide courtesy of D.S.) Local Measurement: GALEX-SDSS (Heckman, Hoopes et al, 2005) LFUV,bol > 2x1010 Msol SFR 5-50 Msol/yr Local : u-band r1/2 (circles) Compact galaxies may be LBG analogs with high SFR/area and SFR/<SFR> Large Compact 0.55<z<0.8 : COSMOS M. Zamojski &D. Schiminovich V-band r1/2 (squares) r1/2 consistent with local sample & Locus slightly higher than for LBGs AAS 72.07 - DS

  20. (Slide courtesy of D.S.) Large UV Luminous Galaxies (UVLGs)r50~10 kpc0.55<z<0.8 AAS 72.07 - DS

  21. (Slide courtesy of D.S.) Compact UV Luminous Galaxies (UVLGs)r50~2.5 kpc0.55<z<0.8 AAS 72.07 - DS

  22. Dust attenuation correctionSchiminovich, Ilbert, Arnouts et al. (2005) Using UV slope:  AFUV = f() FWHM()=1.4 ()=0.4 (Meurer et al.,1999Kong et al., 2004) Full sample  consistent with - local FUV sample (Treyer et al., 2005) - high-z sample (Adelberger, 2000)

  23. Uncorrected SFR vs. Z Schiminovich, Ilbert, Arnouts et al. (2005) Conv. LFUV to SFR (Kennicutt, 1998) No dependence of dust attenuation AFUV with SFRuncor NUV<24.5 NUV <26 (UDIS) L*(z) As a consequence

  24. Corrected SFR vs. Z Schiminovich, Ilbert, Arnouts et al. (2005) Conv. LFUV to SFR (Kennicutt, 1998) + AFUV (Meurer et al., 1999) NUV=24.5 AFUV 4.0 2.5 1.5 0.5 0. Paucity of low AFUV galaxies with high SFRcor - Large scatter in the measured AFUV  - Dust attenuation law M99 relation may overestimate AFUV for star-forming galaxies

  25. Evolution of the SFR Densityuncorrected and dust-corrected (hatched region) Wilson et al (2002) Lilly et al (1996) Sullivan et al (2000) Brinchmann Tresse and Maddox Perez-Gonzalez Gronwall Consistent with H measurements Uncorrected SFRD (1+z)2.5 0<z<1.5 : =2.5 1.2<z<3 : =0.5 Corrected SFRD Meas <AFUV>=1.8 Min AFUV=1.0 (local UV sample Buat et al. 2005)

  26. Photometric Reshifts in F02 fieldworks byIlbert , Arnouts, Budavari et al Photometry used : VVDS : (U)BVRI(JK) CFHTLS : ugriz SWIRE : 3.6 +4.5m VVDS : (U)BVRI (JK) GALEX Classification in Galaxy/Star/QSO FUV LF with photo-z for a large sample Z photometric Area : 0.65 deg2

  27. Photometric Reshifts of UV galaxies in F02 field Colors : galaxy types Filled circles : 1 OC Open triangles : n OCs No systematic 0<z<1.2 Small scatter : =0.04 Secure Zspec : 949

  28. Photometric Reshifts of UV galaxies in F02 field Colors : galaxy types Filled circles : 1 OC Open triangles : n OCs No systematic 0<z<1.2 Small scatter : =0.05 Small number of outliers All Zspec : 1127 VVDS : (U)BVRI (JK)

  29. Color-color checks vs classification (NUV-B) vs (B-I) VVDS : (U)BVRI (JK) Star/galaxy separation Galaxies below the line

  30. Color-color checks vs classification VVDS : (U)BVRI (JK) (FUV-NUV) vs (B-I)

  31. Color-color checks vs classification (B-I) vs (3.6-4.5) VVDS : (U)BVRI (JK) Same QSOs and Stars regions for spec. and phot.

  32. Galaxy Redshift distribution VVDS : (U)BVRI (JK)

  33. FUV Luminosity Function with ~6000 Z-photo At z=1: no constraint on slope Consistent with =-1.6

  34. FUV Luminosity Function Zspec vs Zphot • Consistent with LF(spec) • Smaller errorbars • At 0.2<z<0.4 : • constraint on M*

  35. FUV Luminosity Function Zspec vs Zphot No evolution in  0<z<0.8 Fixed  Consistent M*(z) evolution

  36. Galaxy “Type” classification with Zspec (Arnouts, Schiminovich, Ilbert et al., 2005) Kinney et al;, 1996 • - Small number of galaxies • redder than Sb • Degeneracy between • old syst. and dusty SB Poggianti et al 1997 (NUV-R) correlated with SFRcurrent/ <SFR>past(Salim et al. 2005) : Galaxy SF history (B-I) correlates with (NUV-R) : (B-I) as a crude proxy for galaxy type Apply to the Zphot sample

  37. Galaxy “Type” classification with Zphot Type fraction vs Z (FUV<22, z<0.2) Increase of the unobscured SB class from z=0 to 1

  38. Galaxy “Type” LF with Zphot

  39. Galaxy “Type” LF with Zphot

  40. Galaxy “Type” LF with Zphot

  41. Galaxy “Type” LF with Zphot Similar evolution for the two reddest classes Stronger evolution of the SB class wrt red ones

  42. Galaxy “Type” LF with Zphot (z)~constant per type 2 Red classes : -0.9<  <-1.2 SB class : -1.5<  <-1.8 Modest luminosity evolution of SB class wrt reddest classes Number density evolution of the SB class

  43. Conclusion • GALEX-VVDS PILOT STUDY • Global evolution of the FUV light of galaxies in 0<z<1.5 • and LFs per type: strong increase in density of SB class • Constraint on the evolution of the SFRD (uncorr.,corr.) • A new class of UVLG at 0.5<z<1 (LBG analogs) • in easy reach for optical follow-up • NEAR FUTUR • GALEX-VVDS-SWIRE : nice combined science • (zphot, dust law, SFR vs Mass, AGN evolution,...) • More deep field and a few deeper ( lower SFR sensitivity) • SF sites vs LSS (UV / optical-IR cross-correlation)

  44. Conclusion • GALEX-VVDS PILOT STUDY • Global evolution of the FUV light of galaxies in 0<z<1.5 • and LFs per type: strong increase in density of SB class • Constraint on the evolution of the SFRD (uncorr.,corr.) • A new class of UVLG at 0.5<z<1 (LBG analogs) • in easy reach for optical follow-up • NEAR FUTUR • GALEX-VVDS-SWIRE : nice combined science • (zphot, dust law, SFR vs Mass, AGN evolution,...) • More deep field and a few deeper ( lower SFR sensitivity) • SF sites vs LSS (UV / optical-IR cross-correlation)

More Related