1 / 27

作者: Paul Blowers* and Kyle Hollingshead 出處: J. Phys. Chem. A , 2009 , 113 (20), pp 5942–5950

Estimations of Global Warming Potentials from Computational Chemistry Calculations for CH 2 F 2 and Other Fluorinated Methyl Species Verified by Comparison to Experiment. 作者: Paul Blowers* and Kyle Hollingshead 出處: J. Phys. Chem. A , 2009 , 113 (20), pp 5942–5950 指導教授:胡維平 教授 報告學生:彭家瑜

lin
Download Presentation

作者: Paul Blowers* and Kyle Hollingshead 出處: J. Phys. Chem. A , 2009 , 113 (20), pp 5942–5950

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Estimations of Global Warming Potentials from Computational Chemistry Calculations for CH2F2 and Other Fluorinated Methyl Species Verified by Comparison to Experiment 作者:Paul Blowers* and Kyle Hollingshead 出處:J. Phys. Chem. A, 2009, 113 (20), pp 5942–5950 指導教授:胡維平 教授 報告學生:彭家瑜 報告日期:2009/11/30

  2. Author Paul Blowers The University of Arizona Department of Chemical and Environmental Engineering • Environmental Foresight through Computational Chemistry • Pollution Prevention • Life Cycle Assessment

  3. Abstract • GWP (Global Warming Potentials) 代表的意義是全球暖化的趨勢,由速率常數k 和radiative forcing 可求得。 • 在此處,作者透過理論計算的方式計算了CH2F2的GWP值,結果與實驗值趨勢相差不遠。過程中,結構計算使用B3LYP/6-311g**,單點能量計算使用CBS-RAD方法,由頻率計算可得頻率和IR intensity,得到計算GWP值所需的radiative forcing。TST方法得到速率常數k,進而得到此物質的lifetime。透過以上這些數據,便可得到GWP值。 • 這是作者首次完全使用DFT方法來預測GWP值,由理論計算求得GWP值是一個容易進行的方法。此外,作者還計算了其他CH4、CH3F、CHF3的GWP值,結果理論值也落在現存的數筆實驗值之間。

  4. Outline • Introduction - Motivation • Methods - GWP from computational chemistry methods • Results and Discussion - Comparison computational and experimental results • Conclusions

  5. Introduction - Motivation • Methods - GWP from computational chemistry methods • Results and Discussion - Comparison computational and experimental results • Conclusions

  6. GWP • GWP (Global Warming Potentials) : 全球暖化的趨勢,在一定的時間內,某氣體和CO2相比,所得到的相對輻射影響值。 [xi(t)]:time-dependent concentration of a pulse ai (radiative forcing):該物種在單位濃度下,對單位面積的輻射影響值 TH:arbitrarily selected time horizon (20、100、500 years) 一般使用CO2作為reference gas Lashof, D. A.; Ahuja, D. R. Nature (London, U.K.) 1990, 344, 529

  7. GWP CH2F2 + •OH → •CHF2 + H2O Elrod, M. J. J.Chem. Educ. 1999, 76, 1702

  8. Motivation • 作者在這裡選擇了計算量小的DFT方法來計算GWP值,測試看看是否如實驗值般具有參考的價值,可以作為溫室效應標準的依據。 • 選擇 CH2F2做為第一個計算的HFCs化合物,最主要是因為實驗上有足夠的資料,作為每一個步驟計算的比較。 以理論計算的方式來跟現存的實驗值作對照,按照上述流程圖的方式將一個個組成GWP值的參數計算出來。 • 如果理論值準確,透過已知結果,證明DFT方法計算GWP值的可行性,未來便可繼續使用DFT方法探索未知物的GWP值, 此未知物甚至是更大的分子。

  9. Introduction - Motivation • Methods - GWP from computational chemistry methods • Results and Discussion - Comparison computational and experimental results • Conclusions

  10. GWP Elrod, M. J. J.Chem. Educ. 1999, 76, 1702

  11. GWP from computational chemistry methods Elrod, M. J. J.Chem. Educ. 1999, 76, 1702

  12. Computational method • Characterizing the Potential Energy Surface Geometry and frequencies:B3LYP/6-311g** Single-point energies:CBS-RAD example

  13. TST (transitional-state theory) kb:Boltzmann constant QTS:partition function of h :Planck constant transition state T :temperature QR :partition function of R:ideal gas constant reactant ∆ETS:barrier height

  14. TST (transitional-state theory) • 傳統TST下的假設: 1. 反應為單一方向,到達過渡態的分子必定會成為產物,不會回頭。 2. 反應物的能量遵守Maxwell-Boltzmann分佈。 3. 在Transition State時,沿著反應路徑方向上的運動可以獨立處理。 4. 若能量不夠跨越反應的barrier ,則此反應無法進行。 • Tunneling effect 所造成的現象: 若能量不夠跨越反應的barrier ,反應仍然有機會進行。 Duncan, W. T.; Bell, R. L.; Truong, T. N. J. Comput. Chem. 1998, 19, 1039

  15. Tunneling effect

  16. Atmospheric lifetime of species 兩種預測HCFCs lifetimes 的方法: • 透過積分計算它們在一段時間內的消失量 • 對這個反應而言,速率常數跟lifetime成反比的關係,透過其他已知物lifetime和速率常數,再求得未知物速率常數,便可得到未知物的lifetime The abstract from Prather, M.; Spivakovsky, C. M. J. Geophys. Res., [Atmos.] 1990, 95, 18723 CH3CCl3 data from DeMore, W. B. J. Phys. Chem. 1996, 100, 5813

  17. Atmospheric lifetime of species • 在此處 CH2F2最主要的degradation反應機構為 CH2F2 + •OH → •CHF2 + H2O • 這個反應雖為二級,但在此處 •OH 在大氣中的濃度幾乎不變,所以濃度可以視為一個定值。 Lifetime基本定義: 對一級反應而言: 在此處:

  18. Radiative forcing (Wm-2ppbv-1) • 單位濃度下irradiance的改變量,irradiance為單位面積的電磁輻射量(Wm-2) :cross section (cm2/mole) :radiative function,單位cross section下的radiative forcing Ak:IR intensity for peak k Elrod, M. J. J. Chem. Educ. 1999, 76, 1702

  19. Introduction - Motivation • Methods - GWP from computational chemistry methods • Results and Discussion - Comparison computational and experimental results • Conclusions

  20. Geometry parameters for CH2F2 This work Wang, B., Hou, H., Gu, Y. J. Phys. Chem. A 1999, 103, 9049. Donald, K. J., Bohm, M. C.; Lindner, H. J. J. Mol. Struct. (Theochem) 2004, 710, 1. Hirota, E., Tanaka, T.; Sakakibara, A.; Ohashi, Y.; Morino, Y. J. Molec. Spectrosc. 1970, 34, 222. Hirota, E. J. Molec. Spectrosc. 1978, 71, 145. Average error A=0.615 degree Lide, D. R. J. J. Am. Chem. Soc. 1952, 74, 3548. Average error R=0.01(Å)

  21. Frequency & IR intensity Morcillo, J., Zamorano, L. J.; Heredia, J. M. V. Spectrochim. Acta 1966, 22, 1969. Mizuno, M., Saeki, S. Spectrochim. Acta A 1976, 32, 1077. Kondo, S., Nakanaga, T.; Saeki, S. J. Chem. Phys. 1980, 73, 5409. Kondo, S., Nakanaga, T.; Saeki, S. J. Chem. Phys. 1980, 73, 5409. Suzuki, I., Shimanouchi, T. J. Molec. Spectrosc. 1973,46, 130. Wang, B., Hou, H., Gu, Y. J. Phys. Chem. A 1999, 103, 9049. This work This work Average error 30.93(cm-1) Average error 40.50(km/mol)

  22. Atmospheric lifetime (years) Average error for CH2F2=0.3(years)

  23. Radiative forcing (Wm-2ppbv-1) Average error for CH2F2=3.6*10-3(Wm-2ppbv-1), 2.8%

  24. GWP

  25. Introduction - Motivation • Methods - GWP from computational chemistry methods • Results and Discussion - Comparison computational and experimental results • Conclusions

  26. Conclusions • 作者透過理論計算DFT方法,成功的算出了GWP的結果。在過程中由速率常數k 所計算出來CH2F2的lifetime,跟實驗值亦沒有太大的差距。 • 在其他化合物GWP值的比較上,雖然和實驗值有些許誤差,但其計算出來的GWP,趨勢和大部分的實驗值相同。在溫室效應的程度上仍然有其參考的價值,確認了這個理論的實用性。 • 未來將可繼續使用這個花費廉價,而且容易進行的方法,應用至其他未知溫室氣體的GWP計算上,對溫室效應的研究有所幫助,甚至更進一步的對全人類的命運有所貢獻。

More Related