1 / 21

Two Classical Problems on Stabilization of Statically Unstable Systems by Vibration

Two Classical Problems on Stabilization of Statically Unstable Systems by Vibration. Alexander P. Seyranian and А ndrei А. Seyranian MSU n.a. Lomonosov MSTU n.a. Bauman. Stabilization of the inverted pendulum by HF excitation. Non-dimensional variables.

lovey
Download Presentation

Two Classical Problems on Stabilization of Statically Unstable Systems by Vibration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Two Classical Problems on Stabilization of Statically Unstable Systems by Vibration AlexanderP. Seyranian andАndrei А. Seyranian MSU n.a. Lomonosov MSTU n.a. Bauman

  2. Stabilization of the inverted pendulum by HF excitation Non-dimensional variables What is new:damping and arbitrary periodic function - small parameters Hill’s equation with damping Stephenson (1908)Kapitza (1951) Stabilizationcondition

  3. Instability regions for Mathieu-Hill equation with damping Comparison between analytical and numerical results

  4. Instability regions for the case Destabilization effect of small damping

  5. Stabilization frequency for the pendulum General formula for symmetric functions

  6. Stabilization frequency for the pendulum For symmetric function For non-symmetric function

  7. Stabilization frequency for the pendulum For piecewise constant function we have The first term of this formula can be compared with the formulas derived in the famous books by V.I.Arnold: is important ! Ordinary Differential Equations, The MIT Press, 1978. Mathematical Methods in Classical Mechanics, Springer, 1989.

  8. Stabilization of straight position of elastic column under axial periodic force exceeding critical (Euler) value The Chelomei problem (1956) • Transverse vibrations of the column: (1)

  9. Reduction to ordinary differential equations • Simply supported ends • Separation of variables • New notation

  10. Assumption: , similarity with stabilizationof the inverted pendulum Equation (2): perturbation method, averaging method, . Contradictions: Critical excitation frequency is of the order of the main eigenfrequency Excitation frequency is not limited from below V.N.Chelomei (1914-1984) V.N.Chelomei. On increasing of stability prorerties of elastic systems by vibration. Doklady AN SSSR. 1956. V. 110. N 3. P. 345-347. V.N.Chelomei. Paradoxes in mechanics caused by vibration.Doklady AN SSSR. 1983. V. 270. N 1. P. 62-67. V.N. Chelomei: «high frequency» stabilization of the column

  11. Short review of previous research • N.N.Bogolyubov, Yu.A.Mitroplolskii • Asymptotic methods in the theory of nonlinear vibrations. Moscow, Nauka, 1974. 503 p. • V.V.Bolotin • Numerical analysis • Similarity with the problem on stabilization of an inverted pendulum does not take place due to interference of resonance regions of higher harmonics, narrowing stabilization region of the column • Vibrations in Engineering. Handbook. V. 1. Vibrations of linear systems. Moscow: Mashinostroenie, 1999. 504 p. • Jensen J.S., Tcherniak D.M., Thomsen J.J. • Under high frequency excitation the straight equilibrium position exists along with the curved stable position • Effect of increase of stiffness (eigenfrequencies of transverse vibrations) under high frequency excitation is confirmed experimentally, but critical stability forces or frequencies were not studied

  12. Analysis of Stabilization Region of the Column • Obtainingupper boundary for stabilization frequency: • We apply the results for stability regions study for Hill’s equation with damping to equation (2) at assuming that • Seyranian A.P. Resonance regions for Hill’s equation with damping // Doklady AN. 2001. V. 376. N 1. P. 44-47. • Seyranian A.A., Seyranian A.P. On stability of an inverted pendulum with vibrating suspension point // J. Appl. Maths. Mechs. 2006. V. 70. N 5. P. 835-843. • Upper boundary: (4)

  13. Analysis of Stabilization Region of the Column • Obtaining lower boundary of stabilization frequency: • Strutt-Ince diagram • Analysis of stability region near first critical frequency • Lower boundary: (5)

  14. Stabilization Region • Independent parametersand • Damping decreases upper as well as lower critical frequency • Stabilization region exists only at rather high excitation amplitude (6)

  15. Numerical Results • Good agreement between analytical and numerical results

  16. Stabilization of the column at given excitation frequency

  17. Influence of instability regions of equation (2) for higher harmonics • Parametric resonance for Mathieu-Hill equations (2) occurs at frequencies close to the values [8, 10]: • : • : • Numerical results confirm this conclusion

  18. Conclusions • Stability regions for Hill’s equation with small damping and arbitrary periodic excitation function near zero frequency are obtained • Formulae for the critical stabilization frequencies of the inverted pendulum are derived • Destabilization effect of small damping is recognized • Unlike the inverted pendulum an elastic column is stabilized by frequencies of the order of the main eigenfrequency of transverse vibrations belonging to some interval • It is shown that instability regions for higher harmonics k=2,3,…do not influence the stabilization region • Numerical results confirm validity and accuracy of the obtained analytical formulae

  19. References • В.Н.Челомей. О возможности повышения устойчивости упругих систем при помощи вибрации. Доклады АН СССР. 1956. Т. 110. № 3. С. 345-347. • В.Н.Челомей. Парадоксы в механике, вызываемые вибрациями. Доклады АН СССР. 1983. Т. 270. № 1. С. 62-67. • В.Н.Челомей. Избранные труды. М.: Машиностроение, 1989. 335 с. • Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М: Наука, 1974. 503 с. • Вибрации в технике. Справочник. Т. 1. Колебания линейных систем / Под ред. В.В. Болотина. М.: Машиностроение, 1999. 504 с. • Jensen J.S. Buckling of an elastic beam with added high-frequency excitation // International Journal of Non-Linear Mechanics. 2000. V.35. P. 217-227. • Jensen J.S., Tcherniak D.M., Thomsen J.J. Stiffening effects of high- frequency excitation: experiments for an axially loaded beam // ASME Journal of Applied Mechanics. 2000. V. 67. P. 397-402. • Сейранян А.П. Области резонанса для уравнения Хилла с демпфированием // Доклады АН. 2001. Т. 376. № 1. С. 44-47. • Сейранян А.А., Сейранян А.П. Об устойчивости перевернутого маятника с вибрирующей точкой подвеса // Прикладная математика и механика. 2006. Т. 70. № 5. С. 835-843. • Меркин Д.Р. Введение в теорию устойчивости движения. М.: Наука, 1987. 304 с. • Пановко Я.Г., Губанова И.И. Устойчивость и колебания упругих систем. М.: Наука, 1987. • Thomsen J.J. Vibrations and Stability. Advanced Theory, Analysis and Tools. Berlin: Springer, 2003. 404 p.

  20. New Publications: J. Sound and Vibration • Shnorhakalutyun! • Спасибо за внимание! • Au revoir!

More Related