1 / 16

Production System Techniques to Increase Nitrogen Use Efficiency In Winter Wheat

Production System Techniques to Increase Nitrogen Use Efficiency In Winter Wheat. W.E. Thomason, K.W. Freeman, G.V. Johnson, R.W. Mullen, K.J. Wynn, J.B. Solie, M.L. Stone, and W.R. Raun. Oklahoma State University Department of Plant and Soil Sciences. Introduction.

luisa
Download Presentation

Production System Techniques to Increase Nitrogen Use Efficiency In Winter Wheat

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Production System Techniques to Increase Nitrogen Use Efficiency In Winter Wheat W.E. Thomason, K.W. Freeman, G.V. Johnson, R.W. Mullen, K.J. Wynn, J.B. Solie, M.L. Stone, and W.R. Raun Oklahoma State University Department of Plant and Soil Sciences

  2. Introduction • Nitrogen is essential for plant growth and is the macro-nutrient most susceptible to loss • NUE for cereals worldwide is around 33% (Raun and Johnson, 1999) • Nitrogen use efficiency (NUE) = (N uptake treated - N uptake check) N rate applied

  3. Introduction • Factors affecting NUE • Variety • Production system • N source / timing • N rate • Environment • Tillage/Rotation

  4. Objectives • To evaluate the effects of variety, N source, N timing, N rate, production system, resolution of N application, and application of late-season chemical applications on NUE of winter wheat

  5. Materials and Methods • Three experimental sites: • Stillwater, Tipton, and Haskell, OK • Experimental design: • Split-block with 3 replications • 2 varieties, 2174 and Jagger (77 kg ha-1) • Pre-plant nitrogen rates 0, 34, 56, or 112 kg ha-1 applied as anhydrous ammonia • Fixed topdress N rates, 40 or 70 kg ha-1 (AN) • Variable topdress N rates based on sensor measurements

  6. Materials and Methods • Experimental design (cont): • Forage-only production system • Forage + grain production system • Chemical application • Forage samples • Hand harvested from 1m2 area from center of plots • Analyzed for total N (dry combustion) • Grain Production • Harvest of 3.05 x 2 m area with a self-propelled combine harvester

  7. Forage Yield and N uptake Total yield Total N uptake kg forage yld Treatment kg/ha kg/ha kg N applied variety Efaw, 1999 16 7785 249 74 jagger 18 951 22 7 jagger Haskell, 1999 15 4277 130 44 2174 16 5640 189 71 jagger 17 103 4 1 2174 18 412 12 5 jagger Tipton, 1999 15 7121 183 56 2174 16 9950 262 61 jagger 17 482 21 4 2174 18 1530 57 10 jagger Efaw, 2000 15 7565 197 95 2174 16 5854 153 87 jagger 17 1770 75 18 2174 18 1303 46 19 jagger Haskell, 2000 15 2516 86 30 2174 16 2392 74 27 jagger 17 561 20 7 2174 18 584 23 7 jagger Tipton, 2000 15 3982 147 63 2174 16 4476 170 75 jagger 17 1589 71 24 2174 18 1544 64 26 jagger

  8. Forage + grain yield and N uptake kg total yield Grain yield Grain N uptake Forage yield Forage N uptake Total N uptake Topdress N Preplant N Flower N Total N rate Treatment kg ha-1 kg ha-1 kg ha-1 kg ha-1 forage+grain kg ha-1 kg ha-1 kg ha-1 kg ha-1 kg N applied Variety Stillwater, 1999 18 1832 57 951 22 79 76 56 22 154 18 Jagger Stillwater, 2000 17 3031 87 1770 75 162 22 56 2 100 48 2174 18 2911 74 1303 46 120 12 56 22 90 47 Jagger Haskell, 1999 18 1059 35 412 12 47 34 56 22 112 13 Jagger Haskell, 2000 17 1439 50 561 20 70 28 56 2 106 19 2174 18 572 21 584 23 44 27 56 22 105 11 Jagger Tipton, 1999 17 2568 76 482 21 97 81 56 2 159 19 2174 18 1774 56 1530 57 113 105 56 22 183 18 Jagger Tipton, 2000 17 1983 58 1589 71 129 10 56 2 88 41 2174 18 1825 54 1544 64 118 4 56 22 82 41 Jagger

  9. Results • Forage yields were greatest from the two-cut system • Forage yield : forage uptake ratio • 2-cuttings = 62 kg forage / kg N applied • one cutting (Feekes 5) = 12 kg forage / kg N applied • Forage + grain plots efficiency • 27 kg (grain&forage) / kg N applied

  10. yield, kg ha-1 yield, kg ha-1 NUE NUE Grain plots Stillwater and Haskell, 1999 • Stillwater: • Greatest yield due to 3-way INSEY split treatment • Highest NUE with 3-way INSEYsplit 3500 100 RI = 1.4 3000 80 2500 60 Yield, kg ha-1 2000 NUE 40 1500 20 1000 0 500 0 -20 0 70 90 96 112 154 3500 100 • Haskell: • Highest yield from the check • Very low NUE for the site • Increased N uptake and NUE for 112 kg ha-1 pre-plant RI = 1.0 3000 80 2500 Yield, kg ha-1 60 2000 NUE 1500 40 1000 20 500 0 0 0 54 54 55 112 112 Total N rate, kg ha-1

  11. 4500 yield, kg ha-1 yield, kg ha-1 4000 NUE NUE 3500 3000 2500 2000 1500 1000 500 0 4500 4000 3500 3000 2500 2000 1500 1000 500 0 Grain plots Tipton, 1999 • 2180: • Highest yield and NUE with • 3-way INSEY split N application • 40% NUE with pre-plant • application 70 RI = 2.0 60 50 Yield, kg ha-1 40 NUE 30 20 10 0 0 50 76 92 92 112 112 116 134 174 70 • Jagger: • 57 % NUE of pre-plant + fixed • topdress N • 20 % NUE with 3-way split INSEY grain plots RI = 4.7 60 50 Yield, kg ha-1 40 NUE 30 20 10 0 0 70 84 96 159 183 Total N rate, kg ha-1

  12. 4500 yield, kg ha-1 yield, kg ha-1 4000 NUE NUE 3500 3000 2500 2000 1500 1000 500 0 4500 100 RI = 1.4 90 4000 80 3500 70 3000 60 2500 50 2000 40 1500 30 1000 20 500 10 0 0 0 57 61 70 112 112 Grain plots Stillwater, 2000 • 2174: • Highest yield with 78 kg ha –1 TD • 55 % NUE with pre-plant + FL • 48% NUE with 3-way INSEY • split application 100 RI = 1.3 90 80 70 Yield, kg ha-1 60 NUE 50 40 30 20 10 0 0 31 56 57 59 69 78 90 92 100 • Jagger: • 14% increase due to INSEY based topdress Yield, kg ha-1 NUE Total N rate, kg ha-1

  13. 2500 2500 yield, kg ha-1 yield, kg ha-1 NUE NUE 2000 2000 1500 1500 1000 1000 500 500 0 0 70 RI = 1.0 60 50 40 30 20 10 0 -10 0 61 62 86 105 112 Grain plots Haskell, 2000 • 2174: • Highest yield (2.2 Mg ha-1) with • 3-way INSEY split • Highest NUE with INSEY topdress + FL (32%) 70 RI = 1.1 60 50 40 Yield, kg ha-1 NUE 30 20 10 0 -10 0 92 41 56 56 57 70 85 106 112 • Jagger: • Overall, low yields and low NUE • Highest yield from check • Highest NUE from 3-way INSEY split Yield, kg ha-1 NUE Total N rate, kg ha-1

  14. yield, kg ha-1 yield, kg ha-1 NUE NUE 4500 140 4000 120 3500 100 3000 80 2500 2000 60 1500 40 1000 20 500 0 0 0 39 40 60 82 112 Total N rate, kg ha-1 Grain plots Tipton, 2000 • 2174: • Highest Yield and NUE with • 3-way INSEY split • All >30% 4500 140 4000 120 3500 RI = 2.0 100 3000 Yield, kg ha-1 80 2500 NUE 2000 60 1500 40 1000 20 500 0 0 0 20 41 43 65 78 88 100 101 112 • Jagger: • Highest Yield and NUE with • 3-way INSEY split • Low overall INSEY TD rates RI = 2.7 Yield, kg ha-1 NUE

  15. Conclusions • Highest yield with 3-way INSEY split N application • Best NUE varied with year and location, but most often was the 3-way INSEY split • Efficient use of pre-plant N at Tipton • Forage-only systems had the highest overall values for kg of biomass / kg N applied • Forage harvest limited grain yields of FG plots

More Related