1 / 40

LP Rounding using Fractional Local Ratio

LP Rounding using Fractional Local Ratio. Reuven Bar-Yehuda www.cs.technion.ac.il/~reuven. General framework:. Given a weight vector w. Minimize [Maximize] w·x Subject to: feasibility constraints F(x) x is an r -approximation if F(x) and w·x  r  w·x* [ w·x  r  w·x* ]

lynton
Download Presentation

LP Rounding using Fractional Local Ratio

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LP RoundingusingFractional Local Ratio Reuven Bar-Yehuda www.cs.technion.ac.il/~reuven

  2. General framework: Given a weight vector w. Minimize [Maximize]w·x Subject to: feasibility constraints F(x) x is anr-approximationif F(x) and w·x  rw·x* [w·x  rw·x* ] An algorithm is anr-approximation if for any w, F it returns an r-approximation

  3. 8 12 5 20 10 6 $1 $1 $4 $1 $1 $3 15 $2 $1 Min 5xBisli+8xTea+12xWater+10xBamba+20xShampoo+15xPopcorn+6xChocolate +$4xWaterShampoo+ • • • s.t. xShampoo + xWater + xWaterShampoo  1

  4. The generalized vertex cover problem Minimize w·x Subject to: xu + xv + xe 1  e={u,v} E x{0,1}|V|+|E|

  5. 2-Approx GVC(G,w) If E= return  If  e E w(e)=0 return {e}+GVC(G-e, w) If  v V w(v)=0 return {v}+GVC(G-E(v), w) Let e={u,v} E s.t = min {w(u), w(v), w(e)}>0.  if x{u,v,e} w1(x)= 0 else Notice:w1x  2w1x for Good(x) REC= GVC(G, w2= w-w1) Induction hyp is: w2REC 2w2x so if Good(REC):w1REC 2w1x we are done If REC-e is a cover thenREC=REC-e Return REC   

  6. “2 integral for the price of 1 fractional”: The local ratio technique for rounding Let xbe the the fractional solution Minimize w·x Subject to: xu + xv + xe 1  e=(u,v) E x[0,1]|V|+|E|

  7. “d integral for the price of ½(d+1) fractional”:2-2/(Δ+1)-Approx GVC(G,w)  If E= return  If  e E w(e)=0 return {e}+GVC(G-e, w) If  v V w(v)=0 return {v}+GVC(G-E(v)-v, w) Let v V s.txv is minimum and Let =min(w(i) : i  N[v]}  if i  N[v] w1(i)= 0 else Claim:w1x rΔw1x for Good(x) REC= GVC(G, w2= w-w1) Induction hyp is: w2RECrΔw2x so if Good(REC):w1RECrΔw1x we are done If REC is not a minimal cover then make REC minimal Return REC     Min xv      

  8. “d integral for the price of ½(d+1) fractional”:Claim: w1x rΔw1x for Good(x) IfMin xv ≥ ½ Thenx(N[v]) ≥ ½(d+1) Elsex(N[v]) ≥ ½(d+1) Thus w1x ≥ ½(d+1)  But w1x d Hence: w1x/ w1x  2-2/(d+1)  2-2/(Δ +1) = rΔ      Min xv      

  9. A Generalized Local-Ratio Schema for Minimization [Maximization] problems: Letxbe any “fisible?” vector (e.g. an optimal solution) Algorithm r-ApproxMin [Max](Set, w) If Set =then return  ; If v  Set w(v) = 0 then return {v} r-ApproxMin(Set-{v},w ) ; [If  v  Setw(v) 0 then returnr-ApproxMax(Set-{v},w ) ;] Define “good” w1 ; i.e. Good(x):w1x  []rw1x REC = r-ApproxMin [Max](Set, w2) ; Induction hyp is: w2REC []rw2x so if Good(REC):w1REC []rw1x we are done, otherwise “fix it”; return REC’;

  10. The maximum independent set problem Maximize w·x Subject to: xu + xv≤ 1  e=(u,v) E x{0,1}|V|

  11. The maximum independent set problem “1 integral for the gain of r fractional”: Let xbe the the fractional solution Maximize w·x Subject to: xu + xv≤ 1  e=(u,v) E x[0,1]|V|

  12. Gain 1 integral, lose ½(d+1) fractional2/(Δ+1)-Approx IS(G,w)   If  v V w(v)  0 return IS(G-v, w) If E= return V Let v V s.txv is maximum and Let = w(v)  if i  N[v] w1(i)= 0 else Claim:w1x ≥rΔw1x for Good(x) REC= IS(G, w2= w-w1) Induction hyp is: w2REC≥rΔw2x so if Good(REC):w1REC≥rΔw1x we are done If REC+v is an independent set then REC=REC+v Return REC  Max xv   

  13. Gain 1 integral, lose ½(d+1) fractionalClaim: w1x ≥rΔw1x for Good(x) IfMax xv≤ ½ Then x(N[v]) ≤ ½(d+1) Elsex (N[v]) ≤ ½(d+1) Thus w1x ≤½(d+1) But w1x ≥ Hens: w1x/ w1x ≥2/(d+1) ≥2/(Δ +1) = rΔ    Max xv   

  14. Single Machine Scheduling : Bar-Noy, Guha, Naor and Schieber STOC 99: 1/2 LP Berman, DasGupta, STOC 00: 1/2 Bar-Noy at al, STOC 00  1/2 Activity9 Activity8 Activity7 Activity6 Activity5 Activity4 Activity3 Activity2 Activity1 ????????????? time Maximize s.t.For each instance I: For each time t: For each activity A:

  15. w1=  w1= 0 Activity9 Activity8 Activity7 Activity6 Activity5 Activity4 Activity3 Activity2 Activity1 w1=  w1= 0 w1= 0 w1= 0 w1= 0 w1= 0 w1= 0 w1= 0 w1=  w1 = 0 w1=  w1= 0 w1= 0 w1=  w1=  w1=  w1=  w1=  time Î, and the weight decomposition: • Let Î be the interval which ends first. I in conflict with Î, • Define w1(I) = w2= w-w1 0 otherwise,

  16. 4-approximation for2 Dimentional Interval graphs

  17. 4-approximation for2 Dimentional Interval graphs

  18. 4-approximation for2 Dimentional Interval graphs

  19. 4-approximation for2 Dimentional Interval graphs

  20. 4-approximation for2 Dimentional Interval graphs

  21. 2t-approximation fort- Dimentional Interval graphs

  22. 2t-approximation for t-Interval Graphs Maximize w·x Subject to:  vCxv≤ 1  C Clique x{0,1}|V|

  23. 2t-approximation for t- Interval Graphsfinding x Maximize w·x Subject to:  vCxv≤ 1  CInterval Clique x[0,1]|V| e.g. x1+x4+x5≤ 1

  24. 2t-approximation for t- Interval Graphsfinding more relaxedx Maximize w·x Subject to:  vCxv≤ t  Ct-Interval Clique x[0,1]|V| e.g. x1+x3+x4+x5≤3

  25. Gain 1 integral, lose 2t fractional1/(2t)-Approx IS(G,w)   If  v V w(v)  0 return IS(G-v, w) If E= return V Let v V s.tx(N[v])is minimum and Let = w(v)  if i  N[v] w1(i)= 0 else Claim:w1x ≥ rtw1x for Good(x) REC= IS(G, w2= w-w1) Induction hyp is: w2REC≥rtw2x so if Good(REC):w1REC≥rtw1x we are done If REC+v is an independent set then REC=REC+v Return REC  Min x(N[v])2t   

  26. Gain 1 integral, lose 2t fractionalClaim: w1x ≥rtw1x for Good(x) We need to show that (next slide) x(N[v]) ≤ 2t Thus w1x ≤2t But w1x ≥1 Hence: w1x/ w1x ≥ /(2t) = rt    Min x(N[v])   

  27. Claim: v u N[v] xu≤ 2t Define a directed graph G(V,E) V = Set of t-splits E = {ij : A right endpoind of i “hits” interval j} Define xij = xi xj yi+ =  ij xij and yi- =  ji xji Thus yi+ txi i yi =i yi+ + i yi-  2tixi Thus i yi 2txi and therefore i  i-j xj 2t

  28. 6t-apx for t-Interval Graphs with demandsfinding x Maximize w·x Subject to:  vCdvxv≤ 1  CInterval Clique x[0,1]|V| e.g. d1x1+d4x4+d5x5≤ 1

  29. t-Interval Graphs with demands 6t = (fat)2t+(thin)4t (Assign zi=dixi ) R.Bar-Yehuda and D. Rawitz.ESA2005andDiscrete Optimization 2006.

  30. 2- Dimentional Interval graphs rectangles packing

  31. MIS on axix-parallel rectangles: • NP-Hard even on unit squares [Asano91] • Divide and conquare O(logn)-apx [AKS98] • PTAS where all heights are the same [AKS98] • log(n)/ apx for any constant  [BDMR01] • 4c-apx where c=max #rects covering a point [LNO04] • 12c-apx with demands [Rawitz06]

  32. 4c-apx Liane Lewin-Eytan, Joseph (Seffi) Naor, and Ariel Orda1 Admission Control in Networks with Advance Reservations Algorithmica (2004) 40: 293–304

  33. 4c-apx for rectangle packing Types of intersections: Stabbing: Crossing:

  34. 4c-apx for rectangle packing Algorithm: Partition the input into c crossing free sets Apply 4-apx for each and pick the maximum. . Result: 4c-apx

  35. 4-approximation for MIS on axix-parallel rectanglesfinding x Maximize w·x Subject to:  vCxv≤ 1  C right upper corner Clique x[0,1]|V| 2 3 1 5 4 e.g. x1+x3+x4≤ 1

  36. 4-approximation for MIS on axix-parallel rectanglesfinding more relaxedx Maximize w·x Subject to:  vCxv≤ 2  C right segment Cliques x[0,1]|V| 2 3 1 5 4 e.g. x1+x3+x4+x5≤2

  37. Gain 1 integral, lose 4 fractional4-apx for crossing free recangles  If  v V w(v)  0 return IS(G-v, w) If E= return V Let v V s.tx(N[v])is minimum and Let = w(v)  if i  N[v] w1(i)= 0 else Claim:w1x ≥ ¼ w1x for Good(x) REC= IS(G, w2= w-w1) Induction hyp is: w2REC≥¼ w2x so if Good(REC):w1REC≥¼ w1x we are done If REC+v is an independent set then REC=REC+v Return REC 0 0 Min x(N[v])4  0   0 0

  38. Claim: v u N[v] xu≤4 Define a directed graph G(V,E) V = Set of rectangles E = {ij : Rectangle i “right-stubs” rectangle j} Define xij = xi xj yi+ =  ij xij and yi- =  ji xji Thus yi+ 2*xi i yi =i yi+ + i yi- 2*2ixi Thus i yi 4 xi and therefore i  i-j xj 4

  39. Max IS RECT with demand • Admission Control with Advance Reservation in Simple Networks Dror Rawitz 2006 Thin: Color with C colors Each factor 8 12c= fat4c + thin8c

  40. Thankyou!

More Related