1 / 27

Transport processes in nano-structured materials by non-linear time-resolved spectroscopy

Dip. di Fisica, Uni v. di Firenze. Transport processes in nano-structured materials by non-linear time-resolved spectroscopy R. Torre LENS e Dip. di Fisica , Università di Firenze INFM CRS Soft, c/o Universita’ La Sapienza. Transport Processes.

Download Presentation

Transport processes in nano-structured materials by non-linear time-resolved spectroscopy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dip. di Fisica, Univ. di Firenze Transport processes in nano-structured materials by non-linear time-resolved spectroscopy R. Torre LENS e Dip. di Fisica , Università di Firenze INFM CRS Soft, c/o Universita’ La Sapienza

  2. Transport Processes • Acoustic waves propagation in nano-structured matter • Flow of liquids in micro/nano pores • Heat diffusion in heterogeneous media These transport phenomena are relevant both for fundamental physics and for technological applications. Among them, the design of innovative materials for sound and heat control.

  3. Nano-structured materials Random Structures Nano-porous glasses filled with liquids Colloidal suspensionsGel-forming Mixtures Ordered Structures 2D Fononic Crystals

  4. Nano-porous glasses Porous silica produced by sol-gel techniques. These materials can be “easily” filled by liquids. The sound propagation in this materials shows extraordinary phenomena, as the existence of a second slow longitudinal acoustic wave. The flow processes are strongly modified by the porous dimension and surfaces. The physic models for these phenomena are still an open question .

  5. Spectroscopic Techniques and Facilities at the European Lab. for Non-Linear Spectroscopy (LENS) Continuous Tech. Light Scattering, Raman-Brilluoin Spectroscopy Microscope for single-particle fluorescence Time-Resolved Tech. Transient Grating Spectroscopy Ultrafast Optical Kerr Effect Spectroscopy Time-Domain Tera Hertz Spectroscopy

  6. =532 nm CW single-mode Laser Chopper CW Probe =1064 nm, t=20 ps Nd-Yag mode-locked Laser Pulsed Excitation SD LC Phase Control Neutral Filter Interferenzial Filter Eec El APD Eso El+ES Eso Sample DOE: Phase Grating Eec LA2 LA1 Digital Oscilloscope Transient Grating Spectroscopy

  7. Viscous flow, v Thermal diffusion, t Damped acoustic oscillations, Cs and s Transient Grating Exp. on Vycor glass with Water R. Cucini, A.Taschin, P.Bartolini e R.Torre Vycor 7930 (Corning), porous diameter 4 nmFilled with bi-distilled water Eur. Phys. J. ST, 141, 133–136 (2007) ; Philos. Mag.,87, 715-722 (2007) Phys. Rev. Lett., submitted

  8. Transport Processes vs Biot model M. A. Biot,J. Acoust. Soc. Am.,28, 168 (1956). M. A. Biot, J. Acoust. Soc. Am., 28, 179 (1956). Acoustic Propagation Temperature Dependence • Very Good agreement on Cs A relatively simple theory based on continuum model predicts correctly the high frequency (1.3 GHz) sound velocities in nano-structured materials. • Very Poor predictions on s  The model fails completely the sound damping.

  9. Biot model Transport Processes vs Biot model Viscous Flow of the water inside the nano-porous Thermal Diffusion in the nano-structured material Temperature Dependence • Very Good agreement on v The water flow can be correctly described as the diffusive wave predicted by Biot Model. • No predictions on t?

  10. Sound Velocities Damping of Sound Diffusion Rate of the Liquid Transport Processes vs Biot model Wave-Vector Dependence • Cs does not depend on q Very weak acoustic dispersion effect • s=1/s qx, with x ≈ 1.2 Anomalous sound damping • v=1/vq2 Simple diffusion process

  11. Epi-fluorescence image from a dye filled sample Intensity profile in a selected direction Image from Optical Microscope Transient Grating preliminary results 1 m 100 m 2 m Longitudinal Acoustic Phonon propagating in the 2D Lattice Time nsec 2D Fononic Crystalspreliminary test I. Malfanti, A.Taschin, P.Bartolini and R.Torre, F.Simoni and F.Vita, Univ. Polit. Marche. Ordered micro-Structures in Polymeric Films by Holographic Patterning.

  12. Final Remarks Physics of transport phenomena in micro/nano-structured media is a fundamental topic of material science. Non-linear time-resolved spectroscopy enables accurate and precise investigations of the transport phenomena, covering a particularly wide dynamic range. Transient grating studies of filled nano-porous glasses show that the Biot elastic model is able to predict correctly several transport processes in a nano-structured medium. Nevertheless, some clear limitations of the model are present.

  13. Structured Glasses and Fluids Group@LENS • Permanent staff R. Eramo P. Bartolini R. Torre • PhD students R. Cucini I. Malfanti • Postdocs A. Taschin M. Plazanet LENS is an European Facility European Researchers can use the labs submitting a proposal. www.lens.unifi.it

  14. Le onde vengono diffuse Effetti di multiple scattering Teorie mezzo-effettivo risonante R R Le onde propagano in un mezzo efficace  >> R, Teorie di omogenizzazione Mezzo-effettivo non risonante Modello di Biot Onde acustiche vs mezzi eterogenei  ~ R,

  15. Non-Percolativa Percolativa Mezzi eterogenei solido-liquido Topologia • Sfere di vetro/silice in liquidi • Colloidi Mezzo effettivo • Sfere consolidate con liquidi • Vetri porosi Modello di Biot

  16. Onde acustiche in sistemi solido-liquido Sistemi non percolativi, mezzo-efficace 1 sola onda longitudinale che propaga con velocità efficace  , porosità, , tortuosità Ks, Kl , moduli elastici s, l, densità Sistemi percolativi, modello Biot 2 onde longitudinali che propagano con velocità diverse Km , modulo elastico del solido percolante senza liquido

  17. Teoria di Biot sulla propagazione acustica nei mezzi porosi (1956) (1) La teoria di Biot prevede l’esistenza di due onde acustiche longitudinali di prima e seconda specie, corrispondenti al moto del liquido e della matrice rispettivamente in fase ed in controfase. Frequenza caratteristicawc: funzione della viscosità hl, della densità del liquido rl e del diametro medio dei pori a. L’onda di seconda specie non si propaga Propagazione dell’onda di seconda specie Vycor+CCl4 wc 75 GHz w 3 GHz Mp200nm+CCl4 wc 30 MHz (1) M.A.Biot,J.Acoust. Soc. Am., 28, 168, (1956)

  18. Matrice Porzione di liquido agganciata a Parte del liquido disaccoppiata d Solamente uno strato ddi liquido è viscosamente agganciato alla matrice. Il resto del liquido si disaccoppia: propagazione di una seconda onda con velocità prossima a quella del liquido di bulk. Il fluido è viscosamente agganciato alla matrice solida e si muove in fase con esso: propagazione di una sola onda acustica.

  19. Vycor + CCl4 PM200 + CCl4

  20. Vycor + CCl4

  21. PM200 + CCl4

  22. Onda veloce c Sfere di silice consolidate in acqua Non percolativo Veloc. long. solido percolante Velocità long. liquido percolante Sfere di silice in acqua Onda lenta 0 Parametro di rigidità della matrice solida Modello Biot vs mezzo-efficace percolativo

  23. + + - - Fluidi elettroreologici Sospensioni colloidali di particelle polarizzabili in solventi non-polarizzabili Sfere di silice, con o senza coatings, in liquidi molecolari

  24. Fluidi elettroreologici rappresentano mezzi eterogenei con caratteristiche strutturali e dinamiche controllabili Ordine colonnare indotto Sistema non-percolativo percolativo Aumento della shear viscosity

  25. Come varia la propagazione acustica in funzione del campo elettrico ? Percolativo Non percolativo c • Anistropia di percolazione • Fase solida con ordine cristallino delle nanosfere mutiple scattering e localizzazione ? effetti di bandgap fononiche ? Onda veloce ? Onda lenta ? R   R  << R Campo elettrico Parametro di rigidità del sistema

  26. Prop. planare omeotropica E tempo Misure di equilibrio in funzione della geometria e di E Misure di non-equilibrio in funzione del tempo ( misure strutturali e dinamiche dopo rapida accensione di E)

More Related