1 / 39

Ground Based Photometry

Ground Based Photometry. S.O. Kepler Brazil. Photometry. Single Channel Two channel: star + comparison Three channel: star+comparison+sky CCD: star + comparisons + skies g-modes in Earth’s atmosphere diffraction rings. CCD. Flat field SNR=1000 : 100 flats at 1% linearity

marv
Download Presentation

Ground Based Photometry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ground Based Photometry S.O. Kepler Brazil

  2. Photometry • Single Channel • Two channel: star + comparison • Three channel: star+comparison+sky • CCD: star + comparisons + skies • g-modes in Earth’s atmosphere • diffraction rings

  3. CCD • Flat field SNR=1000 : 100 flats at 1% linearity • At least 2 comparisons stars, bright • Autoguide • Frame transfer or low duty cycle or windowing • Precise timings • Quantum efficiency and altitude variation affect Amp.

  4. Chromatic amplitude changes SX Phe, Rodriguez et al.

  5. Data reduction • Timings for barycenter of the solar system • Leap second corrections • Extinction correction • Optimum extraction: aperture vs seeing

  6. Multiperiodic Herbig Ae star, Bernabel et al.

  7. Fourier Transforms • Noise not poissonic • Data not equally spaced • Need Monte Carlo simulation for false alarm probability • Identification of multiple modes: pre-whitening

  8. Large telescope, small amplitudes 4.1m 2.1m Frequency

  9. Low amplitude pulsators

  10. b Cep

  11. G117-B15A: DAV Teff = 12000K Distance Parallax 95 + 37 pc Optical Spectra 58 + 02 pc IUE flux 59 + 05 pc HST flux 67 + 04 pc Seismology Bradley 1998 61pc Seismology Benvenutto et al. 2002 63 pc Mean: 67 + 14 pc 215s 304s 270s 107s 119s 125s

  12. Eclipsing pulsators PG1336-018, Maia Vuckovic Vik Dhillon, Stuart Littlefair, and Paul Kerry (Sheffield, UK), Tom Marsh (Warwick, UK), Andy Vick and Dave Atkinson (UKATC, Edinburgh, UK)

  13. Stephi: 3-site Delta Scuti

  14. Delta Scuti Network

  15. DSN Campaigns • DSN 1 Theta 2 Tauri1983 • DSN 2 4 CVn 1984 • DSN 3 Theta 2 Tauri 1986 • DSN 4 HR729 1988 • DSN 5 BU Cnc & EP Cnc 1989 • DSN 6 63 Her 1990 • DSN 7 HN CMa 1990 • DSN 8 CD -24 7599 1992 • DSN 9 FG Vir1993 • DSN 10 IC 418 1993 • DSN 11 CD -24 7599 1994 • DSN 12 Theta 2 Tauri 1994 • DSN 13 IC 418 1994 • DSN 14 FG Vir1995 • DSN 15 4 CVn1996 • DSN 16 4 CVn1997 • DSN 17 CD -24 7599 1998 • DSN 18 BI CMi 1998/1999 • DSN 19 BI CMi 1999/2000 • DSN 20 44 Tau 2000 • DSN 21 44 Tau 2001 • DSN 22 FG Vir2002 • DSN 23 FG Vir2003 • DSN 24 44 Tau 2003 • DSN 25 FG Vir2004, 79 freqs • DSN 26 44 Tau 2004 • DSN 27 HD210111 & ,AS Eri 2005 • DSN 28 UV Oct & SS For 2005 • DSN 29 44 Tau 2005

  16. Delta Scuti

  17. Whole Earth Telescope

  18. Whole Earth Telescope • XCov1 Mar 1988 *PG 1346+082* IBWD Winget, Provencal • V803 Cen IBWD O'Donoghue • XCov 2 Nov 1988 *G29-38* DAV Winget • V471 Tau ICBS Clemens • XCov 3 Mar 1989 *PG 1159-035* GW Vir Winget • XCov 4 Mar 1990 *AM CVn* IBWD Solheim, Provencal • G117-B15A DAV Kepler • XCov 5 May 1990 *GD358* DBV Winget • GD165 DAV Bergeron • HD 166473 roAp Kurtz • XCov 6 May 1991 *PG 1707* GW Vir Clemens, Pfeiffer • GD154 DAV Vauclair • XCov 7 Feb 1992 *1H0857* CV Buckley • PG 1115 DBV Barstow, Clemens • G226-29 DAV Kepler • WET-0856 d Scu Breger, Handler • XCov 8 Sep 1992 *PG 2131+066* GW Vir Kawaler, Nather • G185-32 DAV Moskalik • RX J2117 GW Vir Vauclar, Moskalik • XCov 9 Mar 1993 *PG 1159-035* GW Vir Winget • *FG Vir* d Scu Breger • XCov 10 May 1994 *GD358* DBV Nather, Bradley • XCov 11 Aug 1994 *RX J2117* GW Vir Vauclar, Moskalik • XCov 12 Apr 1995 *PG 1351* DBV Hansen • L19-2 DAV Sullivan, Clemens • XCov 13 Feb 1996 *RE 0751+14* CV Marar, Seetha • CD-24 7599 d Scu Breger, Handler • XCov 14 Sep 1996 *PG 0122+200* GW Vir O'Brien • WZ Sge CV Nather • XCov 15 Jul 1997 *DQ Her* CV Nather • EC 20058 DBV O'Donoghue • XCov 16 May 1998 *BPM 37093* DAV Kanaan, Kepler • XCov 17 Apr 1999 *PG 1336* sdB Kilkenny • *BPM 37093* DAV Kanaan, Kepler, Nitta, Winget • XCov 18 Nov 1999 *HL Tau 76* ZZ Ceti Dolez, Vauclair, Kleinman • PG 0122 DOV Vauclair, O'Brein • XCov 19 June 2000 *GD358* DBV Kepler, Nitta • XCov 20 Nov 2000 *HR 1217* roAp Kurtz • KUV 05134+2605 DBV Handler, Nitta • R 548 ZZ Ceti Mukadam • XCov 21 Apr 2001 *PG 1336* sdb Reed, Kilkenny • PG 1654-160 DBV Handler • Feige 48 sdB Reed, Kawaler • Mrk 501 AGN Miller, Krennrich • Xcov 22 May 2002 *PG 1456+103* DBV Handler • PG 1159-035 GW Vir O'Brein • Feige 48 sdB Reed, Kawaler • PG 1605+072 sdB Schuh, et. al, & MSST • XCov 23 Aug 2003 *KPD 1930+2752* sdB Charpinet, Reed • G 29-38 DAV Kleinman • HS 2201+2610 sdB Silvotti • XCov 24 Oct 2004 *PG 0014* sdB Kawaler • RX J2117 GW Vir Moskalik • XCov 25 Jul 2006 GD358 DBV Provencal • XCOV 26 Mar 2008 EC14012-114 DAV Montgomery • PG1159-035 DOV Costa

  19. roAp Don Kurtz Margarida Cunha

  20. White dwarfs

  21. GD 358 light curve in 1996

  22. PG1159-035 k=14 - 42 -no harmonics or combination modes -no convection zone - 198 modes: 29 triplets, 46 quintuplets J. Edu S. Costa

  23. PG1159-035 DP=21.43+0.05s M=0.586+0.001MSun Period(s)

  24. Measure thickness of envelope Córsico et al. 2008

  25. E(cycles) dP/dt=(+10.6+0.1)x10-11 s/s

  26. d2P/dt2

  27. Costa & Kepler 2008: rotation, contraction rates, cooling rates • dP/dt • dPRotation/dt • dR/dt • dT/dt

  28. Average multiplets i=70o

  29. Rotation effects • Multiplets have different amplitudes • Amplitudes change (energy exchange with rotation?) • Gough: “Only when the star is rotating is there a physically real principal axis …with a well defined directed orientation … So if there is an m = +1 , m = −1 asymmetry … it has to be a consequence of rotation.”

  30. Measure evolution and core composition ZZ Ceti white dwarf

  31. ZZ Cetis

  32. Combination frequencies Mike Montgomery

  33. Castanheira & Kepler 2008 Hydrogen layer mass

  34. Questions on mode properties • What are the driving, mode selection, and amplitude limiting mechanism(s)? • Are they the same for all strips and throughout each strip? • What is the cause of the amplitude and phase changes on timescales from weeks to years? • What is the origin, role, and nature of mode coupling? • What is the role of inclination in m-selection, considering we see the amplitude of different m components change with time in a few stars? • Can we measure the velocity and line profile variations needed for mode identification, necessary for full asteroseismic analysis? • Are there other values of the spherical harmonic degree, besides 1 and 2 already observed in white dwarfs? High l have been identified in sd. • Is driving different for different pulse shapes, or for the DOVs, where the models do not indicate significant convection? • Can we identify the modes with chromatic amplitude and combination peaks?

  35. Low amplitudes: AnjumMukadam 2008

  36. Mode identification

  37. That’s all folks!

More Related