1 / 33

Correlations and space-time probes in Heavy-Ion collisions

Correlations and space-time probes in Heavy-Ion collisions. OUTLINE: The Asy-EoS and the role of space-time probes Experimental probes with Chimera and Correlation measurements Conclusions and perspectives. G. Verde, INFN-CT Chimera & Farcos groups, INFN-CT, INFN-LNS, Un. Of Catania.

masako
Download Presentation

Correlations and space-time probes in Heavy-Ion collisions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Correlations and space-time probes in Heavy-Ion collisions • OUTLINE: • The Asy-EoS and the role of space-time probes • Experimental probes with Chimera and Correlation measurements • Conclusions and perspectives G. Verde, INFN-CT Chimera & Farcos groups, INFN-CT, INFN-LNS, Un. Of Catania Zimanyi School 2012 Budapest 3-7 Dec, 2012

  2. IstitutoNazionale di FisicaNucleare, Catania and LNS LNS Catania K800 Tandem (15 MV) EA ≤ 10 MeV Superconducting Cyclotron

  3. Intermediate energies: E/A=20-100 MeVMedium Energies: E/A=100-1500 MeV Dynamics/Thermodynamics EoS, Asy-EoS Space-time probes required (Two-particle correlations, Femtoscopy, emission chronology, time-scales, etc.)

  4. Symmetry energy in finite nuclei Bethe-Weiszacker 16O

  5. B.A. Li et al., Phys. Rep. 464, 113 (2008) ??? Many approaches… large uncertainties…. Microscopic many-body, phenomenological, variational, … The EoS of asymmetric nuclear matter Infinite nuclear matter: how does E depend on density? Typical parameterizations γ ~ 2 ~ Asy-Stiff γ< 0.5~ Asy-Soft

  6. Intermediate energies: E/A=20-100 MeV High energies: E/A>200 MeV CSR, GSI/Fair, NSCL/FRIB, Riken, … Ganil, Eurisol, Frib, Lns, Nscl, Spiral2, Tamu, … SMF - Baran, Colonna, Di Toro, Greco Asy-Stiff Asy-Soft Producing density gradients in the lab Neutron Stars • Radii • Frequencies of crustal vibrations • Composition, thickness of inner crust • URCA processes • Phases within the star Densities ~ 0.01ρ0 - 6ρ0 – Large Gradients!!!

  7. Isolating symmetry energy effects • Symmetry energy effects are small! • Reactions with same Ebeam and different N/Z Enhance effects by increasing δ2 factor ~ (N-Z)2/A2 112Sn + 112Sn 112Sn + 124Sn

  8. Beam TARGET 30° 176° 1° 1m Chimera @ INFN-LNS 1192 Si-CsI(Tl) Telescopes 18 rings in the range 1° ≤ θ ≤ 30° 17 rings in the range 30° ≤ θ ≤ 176° (sphere) High granularity and efficiency up to 94% 4π • Z identification up to beam charge (ΔE-E) • Z and A identification by ΔE-E up to Z≤ 9 • Z and A identification in CsI up to Z ≤ 4 • Mass identification with low energy threshold (< 0.3 MeV/u) by ToF • Z identification for particles stopping in Si (pulse shape)

  9. Be Li HI a 3He t d p CsI (Tl) Si Particle identification in Chimera PSD in CsI(Tl) Z and A for light charged particles ΔE(Si)-E(CsI) Charge Z for particles punching throught the Si detector t V(t) slow fast ΔE(Si)-ToF Mass for particles stopping in the Si detector gate 3-12 cm ~300 μm E(Si)-Rise time Charge Z for particle stopping in Si detectors (NEW) ΔE(Si)-E(CsI) Charge Z and A for light ions (Z<9) punching throught the Si detector

  10. FARCOS add-in: Femtoscopy 4 CsI(Tl) crystals (3rd stage) DSSSD 1500 μm (2nd stage) Assembly cluster DSSSD 300 μm (1st stage) 132 channels by each cluster Based on (62x64x64 mm3) clusters 1square(0.3x62x62mm3)DSSSD 32+32 strips 1square (1.5x62x62mm3)DSSSD 32+32 strips 460x32x32 mm3CsI(Tl) crystals Talk by Emanuele Pagano

  11. Probes of the symmetry energy • Probes at Intermediate energies: sub-saturation density (ρ<ρ0) • Isospin diffusion and drift • Neutron-proton pre-equilibrium emission spectra • nn, np, pp correlation functions • Probes at GSI energies: supra-saturation density (ρ>ρ0) • π+/π- and K+/K0 emission ratios • n/p elliptic flow • n/p pre-equilibrium emission and correlation functions

  12. Effects of the Esym at high density B.A. Li et al., PRC71 (2005) E/A = 400 MeV • N/Z of high density regions sensitive to Esym(ρ) • High ρ>ρ0: asy-stiff more repulsive on neutrons ≈(ρ/ρ0)γ stiffness stiffness

  13. z x V2 y Elliptic flow in HIC at medium energies UrQMD vs. FOPI data: Au+Au @ 400 A MeV Y=rapidity, pt=transversemomentum 5.5<b<7.5 fm Elliptic flow: competitionbetween in plane (V2>0) and out-of-planeejection (V2<0) Qingfeng Li, J. Phys. G31 1359-1374 (2005) P.Russotto et al., Phys. Lett. B 697 (2011)

  14. ASY-EOS S394 experiment @ GSI Darmstadt (Germany) Au+Au @ 400 AMeV 96Zr+96Zr @ 400 AMeV 96Ru+96Ru@ 400 AMeV ~ 5x107 Events for each system TofWall Beam Line ASY-EOS experiment (May 2011) Krakow array Chimera target Shadow Bar MicroBall Land (notsplitted) P. Russotto, INFN-CT

  15. Preliminary results on neutron flow Centrality (Etrans) Au+Au @ 400 AMeV v1 Data Model v2 ylab preliminary P. Russotto, INFN-CT g32new

  16. High ρ/ρ0 Pion and Kaon freeze-out in HIC Low ρ/ρ0 π+, π- K+,K0 RBUU, Ferini et al., PRL97, 202301 • Warning with pions: • Strongly interacting in medium • Freeze-out at late times (low ρ/ρ0) • Difficult to isolate π+ and π- produced in the high density stage • Kaons: more sensitive probes? • Higher thresholds • Weakly interacting in medium • Freeze-out already at 20 fm/c: more reliable as high ρ probes

  17. Multifragmentation Expansion Pre-equilibrium emission b=central 1 2 b=mid-peripheral Neck, low ρ, isospin drift Neck fragments PLF 3 TLF b=peripheral Isospin diffusion & drift PLF 4 TLF HIC at Fermi energies: Esym(ρ) at ρ<ρ0

  18. Isospin equilibration Long τint Esymvsρ Asy-Stiff Short τint Asy-Soft Isospin translucency Isospin drift Isospin diffusion ρ/ρ0 1 n drift N/Z Proj Targ TLF Neck PLF n/p diffusion TLF Neck PLF Isospin drift & diffusion ρ~ρ0 PLF PLF PLF Targ Proj ρ~1/8ρ0 ρ~ρ0 TLF TLF TLF Low ρ<ρ0 Colonna et al.; Danielewicz et al.

  19. Event characterization with Chimera 124Sn+64Ni @ 35 MeV/u 7<Mc<12 0.2<*bred<0.6 Mc>12 *bred<0.2 3<Mc<6 *bred>0.6 TLF IMF PLF TLF IMF PLF TLF ~ IMF ~ PLF Characterize IMF emission IMF times

  20. Time-scales from three-fragment correlations seq. statistical emission from PLF TLF PLF IMF IMF intermediate TLF Vrel (IMF-TLF) / VViola Dynamical emission from neck PLF Vrel (IMF-PLF) / VViola seq. statistical emission from TLF

  21. 1 40 fm/c 2 80 fm/c 3 120 fm/c Emission time-scales and chronology E. De Filippo, P. Russotto, A. Pagano Phys. Rev. C (2012) Simultaneous 3 2 1 Light fragments: shorter time-scales compared to heavier ~40 fm/cvs~120 fm/c Sequential

  22. Li 124Sn + 64Ni 35 A.MeV Be <N/Z> C B Isospin chronology Dynamical emissions: more neutron rich neutron enrichment in neck emissions & sensistivity to Esym(ρ) E. De Filippo, A. Pagano, P. Russotto et al. PRC (2012)

  23. Sensitivity to symmetry energy P. Russotto, E. De Filippo, A. Pagano “Quasi”-Asy-Stiff (γ~0.8) more consistent with experimental results Dynamical Statistical E. De Filippo, A. Pagano, P. Russotto et al., Phys. Rev. C (2012)

  24. QP* QP* 124Sn QT* QT* QP* 112Sn QT* Isospindiffusion and imbalance ratios 112Sn+112Sn 112Sn+124Sn 124Sn+112Sn 124Sn+124Sn NN PP MIX MIX X=Y(7Li)/Y(7Be) Sensitive to N/Z of emitter Isospin transparency Ri(X) = 1 Isospin translucency 0 < Ri(X) < 1 Isospin equilibration Ri(X) = 0

  25. ImQMDγ=0.5 N/Ztranslucencypersists in centralcollision Isospin diffusion: Chimera-MSU coll. x = X7 = Y(7Li)/Y(7Be) Z.Y. Sun, M.B. Tsang, W.G. Lynch, G. Verde et al, PRC82 051603 (2010) 112,214Sn+112,124Sn E/A=35 MeV Ri ImQMD γ = 0.5 ImQMD γ = 2.0 Isospin diffusion excludes very stiff Esym(ρ)∝(ρ/ρ0)2.0

  26. Femtoscopy Imaging: Profile of emitting sources… space-time !images! Deuteron-Alpha correlations Final-state interactions + Coincidence pairs Y12 (q) + Uncorrelated pairs q (MeV/c) E.V. Pagano, G. Verde et al. Nuclear FSI: correlation at q=42 and 84 MeV/c Coulomb FSI: anti-correlation at small q values 1+R(q) 6Li High angular resolution required:  Low q and resonances deuteron-alpha q (MeV/c)

  27. neutron-neutron 7 5 3 1 1.5 1+R(q) 1.0 proton-proton 0.5 0.0 4 3 proton-neutron 2 1 q (MeV/c) NN correlations and symmetry energy Correlation functions IBUU simulations 52Ca+48Ca E/A=80 MeV Central collisions Asy-soft Asy-stiff Lie-Wen Chen et al., PRL (2003), PRC(2005) Proton/neutron emission times sensitive to density dependence of the symmetry energy

  28. Neutron-proton emission chronology Time delay between emissions Δt≠0 - Example: p emitted first Vp < Vn Vp > Vn p p p p n n Interaction attenuated Stronger interaction “particle catch-up”

  29. “Lednicky’s recipe”: p-n correlations p first -100 fm/c n first +100 fm/c 1+R+(q) R. Lednicky et al., Phys. Lett. B373, 30 (1996) Proton faster 1+R−(q) Neutron faster Ratio +/- p-n p-n q (MeV/c) q (MeV/c) R+/R- ratios tell who is emitted first Chronology Esym(ρ)

  30. Some preliminary N/Z effects on p-p 48Ca+48Ca vs40Ca+40Ca E/A=80 MeV - Central R 48Ca+ 48Ca > R 40Ca+ 40Ca Correlations Emitting sources Larger size for more n-rich system:  N/Z effect? Size effect? Asy-EoS? σNN Z. Chajecki, et al. Phys. Rev. C (2012)

  31. Conclusions • Probes of symmetry energy - high density: • GSI energies: n/p flow Chimera-LAND@GSI • π+/π- and K+/K0 emission ratios: future perspectives at RIKEN (SAMURAI/TPC,…) • Space-time probes of symmetry energy - low density: • Intermediate energies: Isospin diffusion and drift;  range of symmetry energies (γ~0.6-0.9)  still large error bars… • Femtoscopy and neutron observables  promising probes

  32. Acknowledgements All the Chimera, Farcos, Exochimgroups Special acknowledgements to students and postdocs

  33. WPCF IX – IX Workshop on Particle Correlations and Femtoscopy • Intensity interferometry, HBT in nuclear and particle physics, particle correlations in resonance decays • Synergy between High Energy and Intermediate Energy Heavy-ion collisions INFN-LNS Catania October 28-November 1, 2013 ANSiP-2013 – Advanced School and Workshop on Nuclear Physics Signal Processing • Signal processing in nuclear physics • Training in new analog and digital • Synergy with technologic research Acireale (CT) November 18-22 1, 2013

More Related