1 / 25

Lukasz Graczykowski, Warsaw University of Technology Johanna Gramling, University of Heidelberg

AliFemto Meeting 19.08.2009. Azimuthally sensitive Hanbury-Brown-Twiss (HBT) Interferometry. Lukasz Graczykowski, Warsaw University of Technology Johanna Gramling, University of Heidelberg Supervisor: Adam Kisiel. momentum anisotropy ⇒ elliptic flow(v2)

mcnair
Download Presentation

Lukasz Graczykowski, Warsaw University of Technology Johanna Gramling, University of Heidelberg

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AliFemto Meeting 19.08.2009 Azimuthally sensitive Hanbury-Brown-Twiss (HBT) Interferometry Lukasz Graczykowski, Warsaw University of Technology Johanna Gramling, University of Heidelberg Supervisor: Adam Kisiel

  2. momentum anisotropy⇒ elliptic flow(v2) spatial anisotropy⇒ HBT-Interferometry coordinatespace momentum space Reaction plane Reaction plane Time HBT-Interferometry needed for consistency checks ⇒ important constraint on models!

  3. Hanbury Brown-Twiss (HBT) Interferometry • Simple Pion-Pion Wave function (no Coulomb or strong interaction): • Correlation Function: • If source is gaussian: “out”: along pair momentum “long”: along beam axis “side”: perpendicular to out and long

  4. Azimuthally sensitive HBT Look at HBT-Radii versus angle between Reaction Plane and Pair Emission Angle Ф Large Rout, small Rside 102.5° 67.5° 157.5° 22.5° Small Rout, Large Rside Reaction plane ᶲ = -22.5° [1]

  5. Predictions for LHC [2] Predictions from hydrodynamical model: worked well for RHIC Different freeze-out characteristics in dependence of the source lifetime: Initial anisotropy can be even switched around for long lifetimes

  6. What was done: • Run Femto Analysis with kT binning: • Pythia: limited usefulness, no emission point information • EPOS(10TeV): real freeze-out coordinates, pp • Therminator(C2030): heavy ion, “natural” elliptic flow, reaction plane • Create macros to plot and fit correlation functions, radii versus considered q-range to estimate systematic errors, radii versus kT

  7. What was done: • Create new pair cut: cut on angle between reaction plane and pair emission angle, Phi • Therefore: change Event Reader, so that Reaction plane is at Phi=0 • Run Femto Analysis with Phi cut on EPOS (10TeV) and Therminator (C2030) • Create Macros • to plot and fit the correlation functions, • to plot R2 versus Phi, • to fit model source function to get input value for R‘s in different phi bins, and • compare it with hydro model prediction (for Therminator)

  8. Correlation function, gaussian fit • Difference between pp and Heavy Ion: higher amplitude for pp ⇒more challenging for heavy ions • Both not gaussian sources: fit is not perfect • Offset for EPOS for low q

  9. 2-gaussian fit for EPOS • Offset for low q disappears • 2nd gaussian term (small source size) describes nearly all of the particles, • 1st gaussian term(large source size) only a few 1: Rout=3.8 fm, Rside=2.9 fm, Rlong=6.7 fm 2: Rout=1.8 fm, Rside1.2 fm, Rlong=2.0 fm

  10. R versus qmax: estimate systematic error • Pythia: „fake“ ideal source ⇒reference case • fluctuations for very small q ranges, then stable

  11. EPOS: oscillation disappears only for large q range • Therminator: statistics too low for detailed study

  12. Source function from model Fitted with

  13. R2 versus Phi: Source function fit EPOS: no oscillations Therminator: oscillations!

  14. R2 versus Phi • EPOS: Reaction plane not provided by the model ⇒only vs emission angle, not vs Phi ⇒have to use reaction plane from Flow Analysis

  15. R2 versus Phi • Therminator: Use Monte Carlo reaction plane ⇒oscillation: as expected, but large error bars

  16. Next steps • To make useful predictions for R vs Phi: use official production for Therminator and EPOS • to get errorbars smaller than expected oscillations • To do kT- and Phi-binning at once • Use the Reaction Plane obtained by the Flow analysis(stored in AOD) to do realistic analysis of R vs Phi (also for EPOS events)

  17. Conclusion • Azimuthally sensitive HBT is an important tool: Spatial information, including the direction of reaction plane, provides information about the fireball characteristics, its lifetime and evolution ⇒Necessary to have the „whole picture“ • Used at RHIC, even more interesting at LHC • Experimental tools are now ready, all cuts and macros are there and tested • Now more detailed studies with the official production for EPOS and Therminator • Include Reaction plane obtained from Flow Analysis

  18. References [1] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 93, 012301 (2004). [2] A. Kisiel et al., Phys. Rev. C79, 014902 (2009)

  19. APPENDIXFITPARAMETERS

  20. Therminator - Johanna's output 3bink1 pi+ FCN=5662 FROM MIGRAD STATUS=CONVERGED 1211 CALLS 1212 TOTAL EDM=2.00171e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.4 per cent EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 Norm 9.96935e-01 6.04936e-04 -0.00000e+00 9.85416e-02 2 Lambda1 2.92234e-01 2.60866e-02 -0.00000e+00 1.42193e-02 3 Rout 5.31788e+00 4.93259e-01 -0.00000e+00 -7.23399e-04 4 Rside 5.95448e+00 3.55757e-01 -0.00000e+00 -8.29856e-04 5 Rlong -8.35271e+00 8.06270e-01 -0.00000e+00 6.05170e-04 6 Routside 1.55185e+00 3.79317e+00 0.00000e+00 6.86852e-04 7 Routlong -4.17527e-06 2.61014e+00 -0.00000e+00 -1.27827e-06 8 Rsidelong 1.89963e+00 5.18460e+00 -0.00000e+00 5.72159e-04 FCN=5662.05 FROM MIGRAD STATUS=CONVERGED 480 CALLS 481 TOTAL EDM=1.01181e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 Norm 9.96935e-01 5.91726e-04 5.37418e-07 -1.23403e-02 2 Lambda1 2.92046e-01 2.51512e-02 1.62322e-05 -2.69274e-03 3 Rout 5.38192e+00 4.10416e-01 4.49151e-05 2.12673e-05 4 Rside 6.09213e+00 4.15037e-01 7.37720e-05 6.43599e-05 5 Rlong 8.44318e+00 6.02137e-01 4.48533e-04 -1.07500e-05

  21. EPOS 1binkt pi+ FCN=4350.29 FROM MIGRAD STATUS=CONVERGED 677 CALLS 678 TOTAL EDM=3.23479e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 Norm 1.00228e+00 4.21951e-04 9.73225e-06 -4.80635e-01 2 Lambda1 5.47660e-01 3.39538e-03 6.59886e-05 -1.34154e-02 3 Rout 1.81922e+00 1.56543e-02 2.81026e-04 6.08557e-03 4 Rside 1.21306e+00 1.05184e-02 1.62590e-04 1.15685e-02 5 Rlong 2.04096e+00 1.52433e-02 2.79751e-04 1.31519e-03 6 Routside 4.58288e-01 8.62173e-02 1.22551e-03 -2.71315e-04 7 Routlong 1.24819e-06 1.30300e-01 4.19656e-03 1.47047e-04 8 Rsidelong 6.41616e-01 6.50832e-02 9.47525e-04 -3.99951e-04 FCN=4385.18 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL EDM=7.4031e-10 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 Norm 1.00221e+00 4.22758e-04 9.77048e-06 4.17058e-02 2 Lambda1 5.47164e-01 3.38966e-03 6.61832e-05 5.84055e-03 3 Rout 1.84717e+00 1.13359e-02 2.79683e-04 -1.60004e-03 4 Rside 1.26018e+00 6.74683e-03 1.60089e-04 3.38379e-03 5 Rlong 2.09146e+00 1.14935e-02 2.77598e-04 -7.32418e-04

  22. 2gauss pi+ FCN=4179.04 FROM MIGRAD STATUS=CONVERGED 1099 CALLS 1100 TOTAL EDM=9.54225e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.0 per cent EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 Norm 1.00082e+00 4.49272e-04 3.05669e-10 2.41608e-01 2 Lambda1 1.89081e-01 1.43163e-02 3.60251e-08 -4.89928e-04 3 Rout1 3.80723e+00 2.61132e-01 1.13517e-06 -3.47922e-04 4 Rside1 2.96375e+00 2.27850e-01 4.75580e-07 -1.20118e-04 5 Rlong1 6.74693e+00 5.60299e-01 3.32776e-06 -2.10935e-04 6 Lambda2 4.97050e-01 6.30413e-03 3.10301e-08 2.92020e-02 7 Rout2 1.77891e+00 1.35259e-02 6.35758e-08 -1.15208e-02 8 Rside2 1.21307e+00 8.24245e-03 2.62120e-08 -8.02389e-03 9 Rlong2 2.00400e+00 1.44306e-02 5.76168e-08 -7.57453e-03

  23. EPOS R versus Phi MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 p0 4.80516e+05 3.31808e+02 6.95453e+01 -1.32853e-07 2 p1 1.04843e+01 1.15311e-02 2.41836e-03 1.20857e-03 yslong=10.4843 xosf=90 yosf=-0.0370067fm FCN=1194.52 FROM MIGRAD STATUS=CONVERGED 194 CALLS 195 TOTAL EDM=7.61535e-10 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 p0 1.04127e+00 8.78625e-03 2.98181e-05 -3.68707e-03 2 p1 5.38176e-01 1.16931e-02 9.31568e-05 -9.05181e-04 3 p2 4.40603e+00 2.58022e-01 2.06276e-03 3.63476e-06 4 p3 2.29851e+00 1.45247e-01 1.40058e-03 1.50833e-04 5 p4 5.56283e+00 3.42828e-01 2.29094e-03 1.40966e-04 6 p5 1.76821e-02 7.89819e-02 1.33294e-03 -6.81168e-05 still working... xoutf=135 youtf=4.40603fm

  24. FCN=74155.2 FROM MIGRAD STATUS=CONVERGED 42 CALLS 43 TOTAL EDM=7.65585e-10 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 p0 4.01573e+05 2.27183e+02 2.22373e+01 -1.26715e-07 2 p1 1.66879e+01 1.37560e-02 1.34701e-03 -3.80663e-03 ysout=16.6879 xsidef=135 ysidef=2.29851fm FCN=424435 FROM MIGRAD STATUS=CONVERGED 42 CALLS 43 TOTAL EDM=7.3555e-09 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 p0 1.07781e+06 6.48134e+02 1.42709e+02 -2.68883e-07 2 p1 2.25505e+00 1.95147e-03 4.30976e-04 -6.86460e-02 ysside=2.25505 xoutf=135 youtf=5.56283fm FCN=481059 FROM MIGRAD STATUS=CONVERGED 43 CALLS 44 TOTAL EDM=4.90629e-10 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 p0 4.73634e+05 3.34134e+02 6.93974e+01 6.35024e-08 2 p1 1.01163e+01 1.13817e-02 2.36536e-03 3.97518e-03 yslong=10.1163 xosf=135 yosf=0.0176821fm

  25. Therminator: use MC Reaction plane • ⇒oscillation, as expected, but large errors

More Related